Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Risky metabolism: Risk-taking behaviour depends on metabolic rate and temperature in great tits

30.09.2014

Animals often differ in their behavioural response to risky situations such as exposure to predators.

Researchers from the Max Planck Institute for Ornithology now found in a long-term study on different populations of great tits that risk-taking behaviour correlates with both metabolic rate and ambient temperature. High metabolic rates and low temperatures were associated with high risk-taking behaviour, as in these scenarios birds were more likely to approach potential predators.


In great tits the metabolism effects their risk behaviour

© Jan Wijmenga

The readiness to take a risk is to a great extent influenced by external circumstances. A recent study showed that men living singly are more risk-prone than those living in a steady relationship. Individual differences in risk-taking behaviour are present not only in humans but also in other vertebrates and even in invertebrates such as the Beadlet anemone.

However, not only external factors can explain these differences in behaviour, but also the basal metabolic rate of the body. For example, in great tits there are large individual differences in basal metabolic rate are consistent over extended periods of time (e.g. years).

A team of researchers from the Max Planck Institute for Ornithology in Seewiesen now found in a long-term study in great tits a relationship between risk-taking behaviour and metabolic rate. Moreover, they investigated how risk-taking behaviour depends on environmental factors.

Within the study period of two years they were able to determine the behaviour and metabolic rate of 184 individual great tits from 12 populations between two lakes in Upper Bavaria, the “Ammersee” and the “Starnberger See”. The birds were captured when roosting inside their nest boxes and brought to the lab to measure metabolic rates. The birds were then equipped with passive transponders, so-called “pit-tags”, and released back to their territories.

There, the researchers installed bird feeders that were fitted with antennas connected to radio frequency identification readers to monitor the movement of great tits. In order to monitor risk-taking behaviour a stuffed model of a sparrowhawk was presented next to the feeders accompanied by playbacks of great tit mobbing calls. With the aid of the transponders, the researchers were able to measure the time that the birds needed to return to the feeder after the disturbance. This measure was then used as a measure for risk-taking behaviour for further analysis.

As a next step the researchers investigated how all these factors were related to each other by means of complex statistical analyses. They first found that the great tits differed in metabolic rate, body mass, and risk-taking behaviour between both study years; in the year when birds had higher metabolic rate, they also showed higher levels of risk-taking behaviour. Additionally, within each year, birds with higher metabolic rates returned to the feeder sooner after being presented with the predator disturbance.

Amazingly, ambient temperature also had an influence on overall risk-taking behaviour; birds tended to take more risks when temperatures were lower “This study shows that variation in risk-taking behaviour is linked to differences in energy constraints. Birds facing higher energetic constraints - either because they have a higher metabolic rate or because low ambient temperatures cause them to spend more energy on thermoregulation – are more willing to forage under “risky” conditions, like when a predator has recently been observed in the area,” concludes Kimberley Mathot, first author of the study. Possibly birds with a high metabolic rate simply cannot afford to delay feeding because of their higher energetic needs, and thus are more willing to take risks.

Dr. Sabine Spehn | Max-Planck-Institut
Further information:
http://www.orn.mpg.de

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>