Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Risky metabolism: Risk-taking behaviour depends on metabolic rate and temperature in great tits

30.09.2014

Animals often differ in their behavioural response to risky situations such as exposure to predators.

Researchers from the Max Planck Institute for Ornithology now found in a long-term study on different populations of great tits that risk-taking behaviour correlates with both metabolic rate and ambient temperature. High metabolic rates and low temperatures were associated with high risk-taking behaviour, as in these scenarios birds were more likely to approach potential predators.


In great tits the metabolism effects their risk behaviour

© Jan Wijmenga

The readiness to take a risk is to a great extent influenced by external circumstances. A recent study showed that men living singly are more risk-prone than those living in a steady relationship. Individual differences in risk-taking behaviour are present not only in humans but also in other vertebrates and even in invertebrates such as the Beadlet anemone.

However, not only external factors can explain these differences in behaviour, but also the basal metabolic rate of the body. For example, in great tits there are large individual differences in basal metabolic rate are consistent over extended periods of time (e.g. years).

A team of researchers from the Max Planck Institute for Ornithology in Seewiesen now found in a long-term study in great tits a relationship between risk-taking behaviour and metabolic rate. Moreover, they investigated how risk-taking behaviour depends on environmental factors.

Within the study period of two years they were able to determine the behaviour and metabolic rate of 184 individual great tits from 12 populations between two lakes in Upper Bavaria, the “Ammersee” and the “Starnberger See”. The birds were captured when roosting inside their nest boxes and brought to the lab to measure metabolic rates. The birds were then equipped with passive transponders, so-called “pit-tags”, and released back to their territories.

There, the researchers installed bird feeders that were fitted with antennas connected to radio frequency identification readers to monitor the movement of great tits. In order to monitor risk-taking behaviour a stuffed model of a sparrowhawk was presented next to the feeders accompanied by playbacks of great tit mobbing calls. With the aid of the transponders, the researchers were able to measure the time that the birds needed to return to the feeder after the disturbance. This measure was then used as a measure for risk-taking behaviour for further analysis.

As a next step the researchers investigated how all these factors were related to each other by means of complex statistical analyses. They first found that the great tits differed in metabolic rate, body mass, and risk-taking behaviour between both study years; in the year when birds had higher metabolic rate, they also showed higher levels of risk-taking behaviour. Additionally, within each year, birds with higher metabolic rates returned to the feeder sooner after being presented with the predator disturbance.

Amazingly, ambient temperature also had an influence on overall risk-taking behaviour; birds tended to take more risks when temperatures were lower “This study shows that variation in risk-taking behaviour is linked to differences in energy constraints. Birds facing higher energetic constraints - either because they have a higher metabolic rate or because low ambient temperatures cause them to spend more energy on thermoregulation – are more willing to forage under “risky” conditions, like when a predator has recently been observed in the area,” concludes Kimberley Mathot, first author of the study. Possibly birds with a high metabolic rate simply cannot afford to delay feeding because of their higher energetic needs, and thus are more willing to take risks.

Dr. Sabine Spehn | Max-Planck-Institut
Further information:
http://www.orn.mpg.de

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>