Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In the ring: Researchers fighting bacterial infections zero in on microorganism's soft spots

14.07.2010
Team maps targets with hopes of blocking reproduction and rendering infection down for the count

In any battle, sizing up one's opponent is a critical first step. For researchers fighting a bacterial infection, that means assessing every nook and cranny of the malicious microorganism and identifying which ones to attack.

At the Center for Biological Research of the Spanish Research Council in Madrid, scientists are devising maneuvers they hope will take out bacteria at their molecular knees, and they are optimistic a recent advance will help yield therapies for a number of infections, including antibiotic-resistant strains delivering blow after blow in hospitals across the globe.

In a Journal of Biological Chemistry "Paper of the Week," Dr. Antonio J. Martín-Galiano and professor José M. Andreu are reporting that they have mapped out a promising target for a strategic hit after carefully analyzing a protein that bacteria need in order to reproduce and further infect hosts.

"Bacterial infections are a threat around the globe. This includes not only people in underdeveloped countries, but also patients compromised by the emergence of new antibiotic-resistant pathogens in First World communities and hospitals," Martín-Galiano said. "There is an urgent need to find new bacterial targets and new antibiotics with which to fight infections. Our work, by providing basic insight into the inner functional mechanisms of one new target, cell-division protein FtsZ, may be a little bit of help."

A bacterial cell reproduces through a process called binary fission. First, the parent cell's DNA duplicates so that the future daughter cell will have all the correct genetic information. Then, special building-block proteins, known as FtsZ, move inside the parent cell toward the center and get to work building scaffolding for the construction of a new dividing ring. FtsZ is believed to generate constriction force, while the cell wall keeps growing toward the center of the cell. Finally, the ring tightens like a noose and splits the cell in two, each with identical DNA.

Martín-Galiano and Andreu focused on how the FtsZ building blocks operate, hoping to understand better how their ever-changing shapes affect the creation of the cell-dividing wall. After all, if FtsZ could be manipulated, perhaps cell division, and replication of the bacteria, could be halted.

Scientists have understood for some time now that, during cell division, the FtsZ filaments assemble and disassemble repeatedly. When the filaments are in the assembly phase, they line up in a relatively straight fashion, and, when they are in the disassembly phase, they become somewhat curved.

But what has remained a mystery is what spurs the change between FtsZ's straight and curved states of being, and their team set out to answer the question: What makes FtsZ shape up just right for the job?

"That would be what is called the FtsZ switch, and it remained to be revealed," Andreu said.

That is, until now.

Andreu's team created computer models that predict the movements of the FtsZ molecules and from that data gleaned which pivot points and hinges allow them to change shape and assemble into straight and curved filaments. They then mutated a number of those moving parts, by switching up their constituent amino acids, and observed how the assembly-disassembly cycle was affected.

"This would be analogous to modifying gears of clockwork in a mechanical watch and then looking at the effects on its functioning," Andreu explained.

Some of the tweaks to the protein's amino acids didn't make much of a difference, and the FtsZ molecules went on with their business as normal: binding to each other, gobbling up energy molecules, breaking apart and repeating those steps about every 10 seconds. But other mutations made a world of difference and shelved FtsZ's cell-wall construction plans entirely.

"Several of the mutations blocked the transition of curved to straight FtsZ and produced spiral filaments instead of straight ones," Andreu said, and spiral filaments can't help the cell to divide. "Interestingly, these critical changes clustered around a cleft between two main moving parts of FtsZ, where a new antibacterial compound is thought to bind."

That compound, known as PC190723, was discovered by researchers at Prolysis Ltd. in 2008 in the United Kingdom and was shown to have antibacterial activity against several microbes, including the quite drug-resistant and virulent staph infection known as methicillin-resistant Staphylococcus aureus, or MRSA.

Now, with the new insights from Andreu's team, scientists are in a better position to pursue other compounds that might inhibit FtsZ's ability to build the bacterial cell wall by binding to the cleft between the two parts of FtsZ with greater specificity or efficiency – essentially mucking up FtsZ's gears.

The researchers performed their analysis and experiments on FtsZ from the archaebacterium Methanococcus jannaschii, which thrives in extreme environments, such as at hydrothermal vents on the seafloor.

"Given the large degree of structural similarity between most FtsZ proteins, including FtsZ from the pathogens that cause tuberculosis, pneumonia and other human infections, we hope that the results may be extrapolated to the FtsZ from pathogenic bacteria," Andreu said.

Andreu and Martín-Galiano's team also included Rubén M. Buey, a former group member who participated in the design of the project and analyzed the results, and Marta Cabezas, who purified many of the FtsZ protein variants.

The team's research was funded by the Spanish Ministry of Science, the Madrid Community and the Federation of European Biochemical Societies. The resulting "Paper of the Week" was published on the Journal of Biological Chemistry's website May 15 and will appear in the July 16 issue.

About the American Society for Biochemistry and Molecular Biology

The ASBMB is a nonprofit scientific and educational organization with more than 12,000 members worldwide. Most members teach and conduct research at colleges and universities. Others conduct research in various government laboratories, at nonprofit research institutions and in industry. The Society's student members attend undergraduate or graduate institutions. For more information about ASBMB, visit www.asbmb.org.

Angela Hopp | EurekAlert!
Further information:
http://www.asbmb.org

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>