Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Ring Closure as Warning

New reagent for the detection of organophosphate neurotoxins with an extremely fast response

Soman, Tabun, and Sarin (which has already been used in terrorist attacks) are chemical weapons that attack the nervous system. When inhaled, these extremely toxic organophosphates can lead to death within minutes.

The search for fast, simple detection methods for these colorless and odorless gases, which are unfortunately relatively easily manufactured, is correspondingly urgent. Julius Rebek, Jr. and Trevor J. Dale at the Scripps Research Institute in La Jolla, California (USA) have now developed a new class of sensors that detect these neurotoxins up to five orders of magnitude faster than previous reagents.

As the scientists report in the journal Angewandte Chemie, these substances not only selectively detect the neurotoxins, they simultaneously render them harmless.

Previous detection methods for organophosphates suffer from the fact that they are not sensitive enough, are too complex to use, and cannot be used in the field. In order to overcome these limitations, Rebek and Dale recently developed a new detection agent with a reaction time in the second range, which was still not fast enough. Step by step, they continued to develop their reagent. This has now led to a class of sensors consisting of an aromatic ring system and equipped with an oxime group (–C=N–OH). This type of group binds extremely fast to organophosphates (the researchers carried out their experiments with harmless neurotoxin analogues). Immediately neighboring the oxime group, the molecule has an alcohol group (–OH). This ensures that the reaction product is immediately split off again, which is important because it is as toxic as the original neurotoxin. This process involves an intramolecular ring closure. The aromatic ring system promotes the tendency of the sensor to undergo this splitting reaction with ring closure. Furthermore, it provides the actual signal that makes the presence of the organophosphate visible: the ring system is a fluorescent dye, and the fluorescence becomes significantly more intense as soon as the structure of the sensor molecule is changed by the ring closure reaction. This optical detection is four to five orders of magnitude faster than the original detection reagent.

It should be possible to develop a simple, rapid-response, highly sensitive detection method for organophosphates based on these new reagents. Because the neurotoxins are rendered harmless by the detection reaction, it may also be possible to develop combined devices for the simultaneous detection and neutralization of the toxins.

Author: Julius Rebek Jr., The Scripps Research Institute, La Jolla (USA),

Title: Hydroxy Oximes as Organophosphorus Nerve Agent Sensors

Angewandte Chemie International Edition 2009, 48, No. 42, doi: 10.1002/anie.200902820

Julius Rebek Jr. | Angewandte Chemie
Further information:

More articles from Life Sciences:

nachricht Strong, steady forces at work during cell division
20.10.2016 | University of Massachusetts at Amherst

nachricht Disturbance wanted
20.10.2016 | Max Delbrück Center for Molecular Medicine in the Helmholtz Association

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>