Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ring Closure as Warning

16.09.2009
New reagent for the detection of organophosphate neurotoxins with an extremely fast response

Soman, Tabun, and Sarin (which has already been used in terrorist attacks) are chemical weapons that attack the nervous system. When inhaled, these extremely toxic organophosphates can lead to death within minutes.

The search for fast, simple detection methods for these colorless and odorless gases, which are unfortunately relatively easily manufactured, is correspondingly urgent. Julius Rebek, Jr. and Trevor J. Dale at the Scripps Research Institute in La Jolla, California (USA) have now developed a new class of sensors that detect these neurotoxins up to five orders of magnitude faster than previous reagents.

As the scientists report in the journal Angewandte Chemie, these substances not only selectively detect the neurotoxins, they simultaneously render them harmless.

Previous detection methods for organophosphates suffer from the fact that they are not sensitive enough, are too complex to use, and cannot be used in the field. In order to overcome these limitations, Rebek and Dale recently developed a new detection agent with a reaction time in the second range, which was still not fast enough. Step by step, they continued to develop their reagent. This has now led to a class of sensors consisting of an aromatic ring system and equipped with an oxime group (–C=N–OH). This type of group binds extremely fast to organophosphates (the researchers carried out their experiments with harmless neurotoxin analogues). Immediately neighboring the oxime group, the molecule has an alcohol group (–OH). This ensures that the reaction product is immediately split off again, which is important because it is as toxic as the original neurotoxin. This process involves an intramolecular ring closure. The aromatic ring system promotes the tendency of the sensor to undergo this splitting reaction with ring closure. Furthermore, it provides the actual signal that makes the presence of the organophosphate visible: the ring system is a fluorescent dye, and the fluorescence becomes significantly more intense as soon as the structure of the sensor molecule is changed by the ring closure reaction. This optical detection is four to five orders of magnitude faster than the original detection reagent.

It should be possible to develop a simple, rapid-response, highly sensitive detection method for organophosphates based on these new reagents. Because the neurotoxins are rendered harmless by the detection reaction, it may also be possible to develop combined devices for the simultaneous detection and neutralization of the toxins.

Author: Julius Rebek Jr., The Scripps Research Institute, La Jolla (USA), http://www.scripps.edu/skaggs/rebek/

Title: Hydroxy Oximes as Organophosphorus Nerve Agent Sensors

Angewandte Chemie International Edition 2009, 48, No. 42, doi: 10.1002/anie.200902820

Julius Rebek Jr. | Angewandte Chemie
Further information:
http://www.scripps.edu/skaggs/rebek/
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>