Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Revisited human-worm relationships shed light on brain evolution

10.02.2011
"Man is but a worm" was the title of a famous caricature of Darwin's ideas in Victorian England. Now, 120 years later, a molecular analysis of mysterious marine creatures unexpectedly reveals our cousins as worms, indeed.

An international team of researchers, including a neuroscientist from the University of Florida, has produced more evidence that people have a close evolutionary connection with tiny, flatworm-like organisms scientifically known as "Acoelomorphs."

The research in the Thursday (Feb. 10) issue of Nature offers insights into brain development and human diseases, possibly shedding light on animal models used to study development of nerve cells and complex neurodegenerative diseases such as Alzheimer's and Parkinson's.

"It was like looking under a rock and finding something unexpected," said Leonid L. Moroz, a professor in the department of neuroscience with the UF College of Medicine. "We've known there were very unusual twists in the evolution of the complex brains, but this suggests the independent evolution of complex brains in our lineage versus invertebrates, for example, in lineages leading to the octopus or the honeybee."

The latest research indicates that of the five animal phyla, the highest classification in our evolutionary neighborhood, four contain worms.

But none are anatomically simpler than "acoels," which have no brains or centralized nervous systems. Less than a few millimeters in size, acoels are little more than tiny bags of cells that breathe through their skin and digest food by surrounding it.

Comparing extensive genome-wide data, mitochondrial genes and tiny signaling nucleic acids called microRNAs, the researchers hailing from six countries determined a strong possibility that acoels and their kin are "sisters" to another peculiar type of marine worm from northern seas, called Xenoturbella.

From there, like playing "Six Degrees of Kevin Bacon," the branches continue to humans.

"If you looked at one of these creatures you would say, 'what is all of this excitement about a worm?'" said Richard G. Northcutt, a professor of neurosciences at Scripps Institution of Oceanography, who was not involved in the study. "These are tiny animals that have almost no anatomy, which presents very little for scientists to compare them with. But through genetics, if the analysis is correct — and time will tell if it is — the study has taken a very bothersome group that scientists are not sure what to do with and says it is related to vertebrates, ourselves and echinoderms (such as starfish).

"The significance of the research is it gives us a better understanding of how animals are related and, by inference, a better understanding of the history of the animals leading to humans," Northcutt said.

Scientists used high-throughput computational tools to reconstruct deep evolutionary relationships, apparently confirming suspicions that three lineages of marine worms and vertebrates are part of a common evolutionary line called "deuterostomes," which share a common ancestor.

"The early evolution of lineages leading to vertebrates, sea stars and acorn worms is much more complex than most people expect because it involves not just gene gain, but enormous gene loss," said Moroz, who is affiliated with the Whitney Laboratory for Marine Bioscience and UF's McKnight Brain Institute. "An alternative, yet unlikely, scenario would be that our common ancestor had a central nervous system, and then just lost it, still remaining a free living organism.

Understanding the complex cellular rearrangements and the origin of animal innovations, such as the brain, is critically important for understanding human development and disease, Moroz said.

"We need to be able to interpret molecular events in the medical field," he said. "Is what's happening in different lineages of neuronal and stem cells, for example, completely new, or is it reflecting something that is in the arrays of ancestral tool kits preserved over more than 550 million years of our evolutionary history? Working with models of human disease, you really need to be sure."

Scientists on the research team include Herve Philippe of the University of Montreal, Henner Brinkmann and Richard R. Copley of the Wellcome Trust Center for Human Genetics in Oxford, Hiroaki Nakano of the University of Tsukuba in Japan, Albert J. Poustka of the Max-Planck Institute in Berlin, Andreas Wallberg of Uppsala University in Sweden, Kevin J. Peterson of Dartmouth College in New Hampshire and Maximilian J. Telford of University College London.

John Pastor | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>