Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Resourceful Microbes Reign in World’s Oceans

25.06.2013
A new chapter in the exploration of microbial life

A research team led by Bigelow Laboratory for Ocean Sciences has discovered that marine microbes are adapted to very narrow and specialized niches in their environment. This may explain why so few of these microbes—usually less than 1%—can be grown for study in the laboratory.


PHOTO: Research underway in the Bigelow Single Cell Genomics Center. Photo by Dennis Griggs.

By utilizing new genetic tools, the researchers’ new ability to read and interpret genetic information from the remaining 99% will be pivotal in detecting and mitigating the impact of human activities in the ocean. Funded by the National Science Foundation, the study was published in the Proceedings of the National Academy of Sciences of the United States of America this week.

The cutting-edge technology that proved critical to the research, and was implemented on a large scale for the first time, is called single cell genomics.
“While other tools are available to analyze genes in uncultured microbes, they seldom tell us how these genes fit together and what microbes they come from,” said Ramunas Stepanauskas, the study’s senior author and director of the Bigelow Single Cell Genomics Center (SCGC). “By developing and applying high-throughput single cell genomics, we obtained the first near-complete genomic blueprints of many microbial types that dominate marine ecosystems but used to be inaccessible to scientific investigation.”

“We found that natural bacterioplankton are devoid of ‘genomic pork,’ such as gene duplications and noncoding nucleotides, and utilize more diverse energy sources than previously thought. This research approach opens a new chapter in the exploration of microbial life in the oceans and in other environments on our planet.”

“We found that genomic streamlining is the rule rather than exception among marine bacterioplankton, an important biological feature that is poorly represented in existing microbial cultures,” said Brandon Swan, lead author and postdoctoral researcher in the SCGC. “We also found that marine microbes are effectively dispersed around the globe, but they stay within their temperature ‘comfort zones.’ Bacteria that thrive in the frigid Gulf of Maine don’t show up near Hawaii. However, as long as the temperature is right, the same types are found anywhere in the world, whether on the coast of British Columbia, Northern Europe, or Tasmania.”

“Thanks to single cell genomics and other technological advances, we now have a much more accurate understanding of the biological diversity and processes taking place in the ocean,” said Tanja Woyke, a key co-author from the Department of Energy Joint Genome Institute. “The amount of adaptations and biochemical innovation that have accumulated in marine microorganisms over billions of years of evolution is astounding—a glass of seawater encodes more genetic information than a desktop computer can hold. This information represents a largely untapped source of novel natural products and bioenergy solutions, both essential for human well-being.”

Bigelow Laboratory for Ocean Sciences is an independent, non-profit center for global ocean research, ocean science education, and technology transfer. The Laboratory conducts research ranging from microbial oceanography -- examining the biology in the world’s oceans at the molecular level -- to the large-scale processes that drive ocean ecosystems and global environmental conditions.

EDITOR’S NOTE: Dr. Stepanauskas may be contacted at 207-315-2567, ext. 308, or at rstepanauskas@bigelow.org.

Contact: Tatiana Brailovskaya, Director of Communications, Bigelow Laboratory for Ocean Sciences, (207) 315-2567, ext. 103; tbrailovskaya@bigelow.org

Tatiana Brailovskaya | EurekAlert!
Further information:
http://www.bigelow.org

More articles from Life Sciences:

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Predicting unpredictability: Information theory offers new way to read ice cores

07.12.2016 | Earth Sciences

Sea ice hit record lows in November

07.12.2016 | Earth Sciences

New material could lead to erasable and rewriteable optical chips

07.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>