Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers get unprecedented view of protein folding that may help develop brain disease therapies

16.03.2011
When vital proteins in our bodies are misfolded, debilitating diseases can result. If researchers could see the folding happen, they might be able to design treatments for some of these diseases or even keep them from occurring. But many of our most critical proteins are folded, hidden from sight, inside tiny molecular chambers. Now researchers at Stanford have gotten the first-ever peek inside one of these protein-folding chambers as the folding happened, and the folding mechanism they saw surprised them.

Misfold an origami swan and the worst that happens is you wind up with an ugly paper duckling. Misfold one of the vital proteins in your body – each of which must be folded in a particular way to perform its function – and the result can be a debilitating neurodegenerative disease such as Alzheimer's or Huntington's.

There are no cures for such brain-wasting diseases, but now Stanford researchers have taken an important step that may one day aid in developing therapies for them. They have literally popped the lid off one of the microscopic chambers in which many of life's most crucial proteins are folded, witnessing a surprising mechanism as the heretofore hidden folding process happened before their eyes.

Virtually all proteins need to be folded, whether in primitive organisms such as bacteria or multicellular creatures such as humans. Many are guided through the process by molecules called chaperones, of which a specialized subset – chaperonins – folds many of the most complex proteins.

Folding in bacteria has been studied in detail, but Judith Frydman, a professor of biology who led the Stanford research, said this is the first time anyone has seen the folding process performed in higher organisms.

"The mechanism of folding we saw in the chaperonin is very different from what we expected and from what has been seen in bacteria," Frydman said. "It was really surprising, and we are still amazed that it worked. This chaperonin appears to provide a unique chemical environment."

Chaperonins are shaped like a barrel, with two ring-shaped chambers arranged one atop the other. At the open end of each ring is a lid that opens and closes in a spiraling fashion, like the aperture of a camera, something Frydman's team discovered in 2008 while studying the chaperonin called TRiC. Since then, they've been working to solve the puzzle of how a protein gets folded once the chaperonin has grabbed it, pulled it into the chamber and the aperture has closed. A paper describing their findings was published earlier this year in Cell.

Frydman said there were two likely ways in which a protein, initially a linear chain of molecules (amino acids), could theoretically be folded inside the chamber.

One is by mechanical means, with the chamber holding onto the protein and physically pushing it into the right shape.

"The other one is that when the lid closes, the chaperonin lets go of the protein, but some special chemical properties in this chamber somehow make it fold," she said. "Our evidence is that this mechanism is the correct one."

The only way to know which mechanism was doing the work was to see inside the chamber while the folding was happening, but simply opening up the lid wouldn't work, because the shape of the entire chamber changes in accordance with the motion of the lid. When the lid spirals open, the walls of the chamber spiral open, too, and the protein floats away.

To see what was happening, Frydman's team devised a chemical "trick" by which they could remove the lid on the chamber, but still get the walls of the chamber to close in, as if the lid were spiraling.

When they "closed" the lidless chamber, the chaperonin simply released the protein that had been destined to be folded. Like a long balloon that slipped from a child's grip before it could be folded into a giraffe, the protein simply drifted off.

The challenge then became figuring out how the protein was getting released.

"One of the reasons why the mechanical model of pushing the protein into shape without letting go had been proposed was because there was no obvious way for this chaperonin to let go of the protein," Frydman said.

When a protein gets grabbed for folding by TRiC, it is held by eight binding sites along the walls of the chamber. Between each binding site is a tiny loop. Frydman's team suspected that during the closing process, the loops might move to somehow "shave off" the protein and release it into the folding chamber. One of her students made mutations in the loop. When the researchers did experiments in which TRiC chaperonins equipped with mutated loops were closed, the protein stayed put. It also failed to fold.

"That suggests that the way this chaperonin folds its proteins is by releasing them in a closed chamber that has very special chemical properties," Frydman said.

"This mechanism of release is completely different from what has been seen in any other chaperone. That was very, very surprising."

The experimental work described in the Cell paper was done using a simpler version of TRiC, from a single-celled organism, than would be found in multi-cellular organisms, Frydman said, because the simpler version is much easier to manipulate.

"Now we are interested in going back to the eukaryotic [multi-cellular] complex, where every binding site in the folding chamber is different and every release loop is different," Frydman said. "I think this really opens up a lot of interesting avenues to explore how this works in higher organisms. Since TRiC helps fold many disease-linked proteins, and is central to protect cells from misfolding diseases such as Huntington's disease, this work could have many therapeutic applications."

Louis Bergeron | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Life Sciences:

nachricht Water world
20.11.2017 | Washington University in St. Louis

nachricht Carefully crafted light pulses control neuron activity
20.11.2017 | University of Illinois at Urbana-Champaign

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>