Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers get unprecedented view of protein folding that may help develop brain disease therapies

16.03.2011
When vital proteins in our bodies are misfolded, debilitating diseases can result. If researchers could see the folding happen, they might be able to design treatments for some of these diseases or even keep them from occurring. But many of our most critical proteins are folded, hidden from sight, inside tiny molecular chambers. Now researchers at Stanford have gotten the first-ever peek inside one of these protein-folding chambers as the folding happened, and the folding mechanism they saw surprised them.

Misfold an origami swan and the worst that happens is you wind up with an ugly paper duckling. Misfold one of the vital proteins in your body – each of which must be folded in a particular way to perform its function – and the result can be a debilitating neurodegenerative disease such as Alzheimer's or Huntington's.

There are no cures for such brain-wasting diseases, but now Stanford researchers have taken an important step that may one day aid in developing therapies for them. They have literally popped the lid off one of the microscopic chambers in which many of life's most crucial proteins are folded, witnessing a surprising mechanism as the heretofore hidden folding process happened before their eyes.

Virtually all proteins need to be folded, whether in primitive organisms such as bacteria or multicellular creatures such as humans. Many are guided through the process by molecules called chaperones, of which a specialized subset – chaperonins – folds many of the most complex proteins.

Folding in bacteria has been studied in detail, but Judith Frydman, a professor of biology who led the Stanford research, said this is the first time anyone has seen the folding process performed in higher organisms.

"The mechanism of folding we saw in the chaperonin is very different from what we expected and from what has been seen in bacteria," Frydman said. "It was really surprising, and we are still amazed that it worked. This chaperonin appears to provide a unique chemical environment."

Chaperonins are shaped like a barrel, with two ring-shaped chambers arranged one atop the other. At the open end of each ring is a lid that opens and closes in a spiraling fashion, like the aperture of a camera, something Frydman's team discovered in 2008 while studying the chaperonin called TRiC. Since then, they've been working to solve the puzzle of how a protein gets folded once the chaperonin has grabbed it, pulled it into the chamber and the aperture has closed. A paper describing their findings was published earlier this year in Cell.

Frydman said there were two likely ways in which a protein, initially a linear chain of molecules (amino acids), could theoretically be folded inside the chamber.

One is by mechanical means, with the chamber holding onto the protein and physically pushing it into the right shape.

"The other one is that when the lid closes, the chaperonin lets go of the protein, but some special chemical properties in this chamber somehow make it fold," she said. "Our evidence is that this mechanism is the correct one."

The only way to know which mechanism was doing the work was to see inside the chamber while the folding was happening, but simply opening up the lid wouldn't work, because the shape of the entire chamber changes in accordance with the motion of the lid. When the lid spirals open, the walls of the chamber spiral open, too, and the protein floats away.

To see what was happening, Frydman's team devised a chemical "trick" by which they could remove the lid on the chamber, but still get the walls of the chamber to close in, as if the lid were spiraling.

When they "closed" the lidless chamber, the chaperonin simply released the protein that had been destined to be folded. Like a long balloon that slipped from a child's grip before it could be folded into a giraffe, the protein simply drifted off.

The challenge then became figuring out how the protein was getting released.

"One of the reasons why the mechanical model of pushing the protein into shape without letting go had been proposed was because there was no obvious way for this chaperonin to let go of the protein," Frydman said.

When a protein gets grabbed for folding by TRiC, it is held by eight binding sites along the walls of the chamber. Between each binding site is a tiny loop. Frydman's team suspected that during the closing process, the loops might move to somehow "shave off" the protein and release it into the folding chamber. One of her students made mutations in the loop. When the researchers did experiments in which TRiC chaperonins equipped with mutated loops were closed, the protein stayed put. It also failed to fold.

"That suggests that the way this chaperonin folds its proteins is by releasing them in a closed chamber that has very special chemical properties," Frydman said.

"This mechanism of release is completely different from what has been seen in any other chaperone. That was very, very surprising."

The experimental work described in the Cell paper was done using a simpler version of TRiC, from a single-celled organism, than would be found in multi-cellular organisms, Frydman said, because the simpler version is much easier to manipulate.

"Now we are interested in going back to the eukaryotic [multi-cellular] complex, where every binding site in the folding chamber is different and every release loop is different," Frydman said. "I think this really opens up a lot of interesting avenues to explore how this works in higher organisms. Since TRiC helps fold many disease-linked proteins, and is central to protect cells from misfolding diseases such as Huntington's disease, this work could have many therapeutic applications."

Louis Bergeron | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>