Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers uncover Fragile X syndrome gene's role in shaping brain

10.05.2010
Researchers at UT Southwestern Medical Center have discovered how the genetic mutation that causes Fragile X syndrome, the most common form of inherited mental retardation, interferes with the "pruning" of nerve connections in the brain. Their findings appear in the April 29 issue of Neuron.

Soon after birth, the still-developing brain of a mammal produces too many nerve connections that create "noise" in the nervous system. The brain finds it hard to process these signals, like a person trying to have a conversation at a loud party. But as the brain matures and learning takes place, some nerve connections naturally become stronger while others weaken and die, leading to an adult with a properly wired brain.

Fragile X is caused by a mutation in a single gene, Fmr1, on the X chromosome. The gene codes for a protein called FMRP, which plays a role in learning and memory but whose full function is unknown. The protein's role in pruning nerve connections had been unclear.

"I think we've uncovered a core function for the gene involved in this disease, and if we can find other biochemical methods involved in nerve pruning, we might be able to help correct this," said Dr. Kimberly Huber, associate professor of neuroscience at UT Southwestern and senior author of the study.

In the current study, Dr. Huber and her colleagues examined nerve cells isolated from mice that had been engineered to lack the Fmr1 gene and, therefore, did not produce FMRP protein. They then tested whether the lack of FMRP affected the functions of another protein called MEF2, which is known to be involved in pruning nerve connections.

The researchers found that nerve cells lacking FMRP were unable to respond to MEF2. Adding FMRP to the cells restored MEF2's normal function.

"We were massively activating the MEF2 gene in the cell, and it did absolutely nothing without FMRP," Dr. Huber said. Such an all-or-nothing requirement in a biochemical relationship is rare, she said.

The findings also raise questions about how the two proteins interact physically. MEF2 works in the nucleus of a cell, where it controls whether other genes are turned on or off. FMRP shuttles in and out of the cell's nucleus and into its main body.

"This opens up new ideas about how processes in the cell's nucleus, near its DNA, can affect the nerve connections, which are very far away at the other end of the cell," Dr. Huber said. "We think MEF2 is making messenger RNA [ribonucleic acid], which translates the genetic code of the DNA, and FMRP is binding to the RNA and either transporting it to the nerve connections and/or controlling how the RNA makes protein."

Further research will focus on the relationship between the proteins. For instance, one might directly control the other, or they might work together on a common target, Dr. Huber said.

"This work might not have clinical implications for quite a while," she said. "The goal for us as scientists is to understand how these genes relate to mechanisms that control the development of nerve connections."

Like other genetic diseases carried on the X chromosome, Fragile X syndrome strikes boys more often and more severely than girls. Girls have two X chromosomes, so a normal gene on one chromosome can mitigate the effects of the disease if the gene on the other X chromosome is abnormal. Boys, however, have only one X chromosome, so if they inherit an abnormal gene on the X chromosome, they have no protection.

Other UT Southwestern researchers involved in the study were lead author and former graduate student Brad Pfeiffer; Dr. Tong Zang, postdoctoral researcher in neuroscience; Dr. Julia Wilkerson, postdoctoral researcher in neuroscience; Dr. Makoto Taniguchi, postdoctoral researcher in psychiatry; Marina Maksimova, research assistant in neuroscience; Dr. Laura Smith, postdoctoral researcher in psychiatry; and Dr. Christopher Cowan, assistant professor of psychiatry.

The study was funded by the National Institutes of Health, Autism Speaks, the Whitehall Foundation and Simons Foundation.

This news release is available on our World Wide Web home page at http://www.utsouthwestern.edu/home/news/index.html

To automatically receive news releases from UT Southwestern via e-mail, subscribe at www.utsouthwestern.edu/receivenews

Aline McKenzie | EurekAlert!
Further information:
http://www.utsouthwestern.edu

Further reports about: DNA FMR1 FMRP Foundation Fragile MEF2 RNA X chromosome genetic disease nerve cell

More articles from Life Sciences:

nachricht Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth
01.03.2017 | Hochschule für Angewandte Wissenschaften Hamburg

nachricht Researchers Imitate Molecular Crowding in Cells
01.03.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>