Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers uncover Fragile X syndrome gene's role in shaping brain

10.05.2010
Researchers at UT Southwestern Medical Center have discovered how the genetic mutation that causes Fragile X syndrome, the most common form of inherited mental retardation, interferes with the "pruning" of nerve connections in the brain. Their findings appear in the April 29 issue of Neuron.

Soon after birth, the still-developing brain of a mammal produces too many nerve connections that create "noise" in the nervous system. The brain finds it hard to process these signals, like a person trying to have a conversation at a loud party. But as the brain matures and learning takes place, some nerve connections naturally become stronger while others weaken and die, leading to an adult with a properly wired brain.

Fragile X is caused by a mutation in a single gene, Fmr1, on the X chromosome. The gene codes for a protein called FMRP, which plays a role in learning and memory but whose full function is unknown. The protein's role in pruning nerve connections had been unclear.

"I think we've uncovered a core function for the gene involved in this disease, and if we can find other biochemical methods involved in nerve pruning, we might be able to help correct this," said Dr. Kimberly Huber, associate professor of neuroscience at UT Southwestern and senior author of the study.

In the current study, Dr. Huber and her colleagues examined nerve cells isolated from mice that had been engineered to lack the Fmr1 gene and, therefore, did not produce FMRP protein. They then tested whether the lack of FMRP affected the functions of another protein called MEF2, which is known to be involved in pruning nerve connections.

The researchers found that nerve cells lacking FMRP were unable to respond to MEF2. Adding FMRP to the cells restored MEF2's normal function.

"We were massively activating the MEF2 gene in the cell, and it did absolutely nothing without FMRP," Dr. Huber said. Such an all-or-nothing requirement in a biochemical relationship is rare, she said.

The findings also raise questions about how the two proteins interact physically. MEF2 works in the nucleus of a cell, where it controls whether other genes are turned on or off. FMRP shuttles in and out of the cell's nucleus and into its main body.

"This opens up new ideas about how processes in the cell's nucleus, near its DNA, can affect the nerve connections, which are very far away at the other end of the cell," Dr. Huber said. "We think MEF2 is making messenger RNA [ribonucleic acid], which translates the genetic code of the DNA, and FMRP is binding to the RNA and either transporting it to the nerve connections and/or controlling how the RNA makes protein."

Further research will focus on the relationship between the proteins. For instance, one might directly control the other, or they might work together on a common target, Dr. Huber said.

"This work might not have clinical implications for quite a while," she said. "The goal for us as scientists is to understand how these genes relate to mechanisms that control the development of nerve connections."

Like other genetic diseases carried on the X chromosome, Fragile X syndrome strikes boys more often and more severely than girls. Girls have two X chromosomes, so a normal gene on one chromosome can mitigate the effects of the disease if the gene on the other X chromosome is abnormal. Boys, however, have only one X chromosome, so if they inherit an abnormal gene on the X chromosome, they have no protection.

Other UT Southwestern researchers involved in the study were lead author and former graduate student Brad Pfeiffer; Dr. Tong Zang, postdoctoral researcher in neuroscience; Dr. Julia Wilkerson, postdoctoral researcher in neuroscience; Dr. Makoto Taniguchi, postdoctoral researcher in psychiatry; Marina Maksimova, research assistant in neuroscience; Dr. Laura Smith, postdoctoral researcher in psychiatry; and Dr. Christopher Cowan, assistant professor of psychiatry.

The study was funded by the National Institutes of Health, Autism Speaks, the Whitehall Foundation and Simons Foundation.

This news release is available on our World Wide Web home page at http://www.utsouthwestern.edu/home/news/index.html

To automatically receive news releases from UT Southwestern via e-mail, subscribe at www.utsouthwestern.edu/receivenews

Aline McKenzie | EurekAlert!
Further information:
http://www.utsouthwestern.edu

Further reports about: DNA FMR1 FMRP Foundation Fragile MEF2 RNA X chromosome genetic disease nerve cell

More articles from Life Sciences:

nachricht Complementing conventional antibiotics
24.05.2018 | Goethe-Universität Frankfurt am Main

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>