Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers uncover biological rationale for why intensive lupus treatment works

27.07.2010
Researchers at UT Southwestern Medical Center have uncovered the biological rationale for why large doses of corticosteroids given repeatedly over several weeks may help individuals with lupus, a chronic inflammatory disease that affects more than 1 million people in the U.S.

Unlike the anabolic steroids athletes sometimes use illegally to bulk up muscle, corticosteroids are routinely used to treat inflammation in lupus patients. The drugs, however, can cause undesirable side effects including weight gain and acne when taken over long periods of time.

In a study published in a recent issue of Nature, researchers at UT Southwestern and other institutions show in blood cells that giving very high doses of intravenous corticosteroids early and frequently in the course of the disease is more effective at killing the cells that drive lupus than giving the standard limited intravenous steroids followed by high doses of oral corticosteroids over a period of months. The cells used came from lupus patients as well as from animal models of lupus.

"By giving the very high dose early and frequently in the course of the disease, we could actually end up using much less steroids in the long run," said Dr. Marilynn Punaro, professor of pediatrics at UT Southwestern and co-author of the study. "This finding suggests that by doing so, we might be able to get the disease under control more quickly and patients might experience fewer long-term side effects."

Dr. Punaro, who treats patients at Children's Medical Center Dallas and Texas Scottish Rite Hospital for Children, said her team often uses this treatment plan – referred to as pulse steroids – with lupus patients because they've found it can be more effective than standard treatment at maintaining control of the disease.

The standard treatment involves giving very high doses of steroids intravenously for only a few days. Most physicians then transition to a high oral dose and gradually reduce the amount of steroids to the lowest level at which the drugs are still effective.

Lupus is a debilitating autoimmune disease in which the immune system attacks the body's own tissue and organs, including the joints, kidneys, heart, lungs, brain, blood and skin. The Lupus Foundation of America estimates that 1.5 million Americans have the disease, which affects all age groups. It is 10 to 15 times more likely in adult women than adult men.

The immune system of lupus patients is dysfunctional, causing inflammation throughout the body. In this study, researchers used the blood cells to investigate why the standard treatment might be less effective in halting the inflammation.

They found that pulse doses of intravenous steroids kill off the cells – called plasmacytoid dendritic cells – producing interferon alpha, a protein that promotes this inflammation. Oral corticosteroids given at much lower doses did not have this effect.

"Now we have the biological rationale for why pulsing is often more effective than standard therapy," said Dr. Tracey Wright, assistant professor of pediatrics at UT Southwestern and another study co-author.

Dr. Punaro, director of the pediatric rheumatology division at UT Southwestern, said the team hopes that this study will lead to recommendations on ways to treat lupus patients more effectively.

"If the patient receives very high doses of pulse steroids during the induction period, when steroid-sparing long-term drugs – which take a while to work – are being ramped up to an effective level, then our experience has been that we end up using fewer steroids overall," Dr. Punaro said. "Steroids are probably always going to be a short-term fix because they work quickly and powerfully, but we hope that this information will enable physicians to be smarter about how they use steroids."

The next step, she said, is to use the paper's scientific rationale as the basis for a clinical trial comparing patients who receive the more intensive therapy with those getting standard therapy.

Dr. Virginia Pascual, former director of the pediatric rheumatology division at UT Southwestern, contributed to the study. Researchers from Dynavax Technologies Corp. were lead and senior authors of the paper; researchers at Baylor Institute for Immunology Research, the National Institutes of Health and Institut Curie in Paris also contributed to the investigation.

The study was supported by the National Institutes of Health, the Alliance for Lupus Research and the Mary Kirkland Center for Lupus Research.

Visit http://www.utsouthwestern.org/pediatrics to learn more about UT Southwestern's clinical services in pediatrics.

This news release is available on our World Wide Web home page at http://www.utsouthwestern.edu/home/news/index.html

To automatically receive news releases from UT Southwestern via e-mail, subscribe at www.utsouthwestern.edu/receivenews

Kristen Holland Shear | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>