Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers show environmental changes may affect vital cooperate bird behaviors

12.01.2011
While scientists believe that climate change and related extreme weather events such as drought and flooding will likely affect the earth's flora and fauna, just how much is not known. A new study by researchers Walter Jetz from Yale University and Dustin Rubenstein from Columbia University however shows an important link between the natural variation in climate conditions and complex behaviors among birds.

The study, which appears in print in Current Biology on Jan. 11, 2011, has implications for understanding how organisms may respond behaviorally to increased climate variability resulting from climate change. They argue that species that live in families may be better guarded against the effects of unpredictable climatic conditions.

Family-living, or cooperative breeding, is common among birds. Cooperative breeding societies, such as humans, are typically characterized by groups of relatives that work together to raise young. Usually, some birds forgo their own reproduction to help raise others' offspring. However, some cooperative breeding societies consist of groups of non-relatives that also work together in raising young. From Australia to the Amazon, cooperatively breeding birds account for approximately 831 species—or nearly 10 percent—of the nearly 10,000 avian species worldwide.

Using a behavioral data set of more than 95 percent of the world's birds, and a global 40-year climate dataset, the researchers examined how environmental factors—like mean and variation in temperature and rainfall—and biotic factors—like body mass, diet breadth and type—influence the incidence and global distribution of family-living in birds.

"Scientists have long known that family-living birds are more common in some parts of the world than others," said Rubenstein, assistant professor of ecology, evolution & environmental biology. "But this is the first time that we have been able to study the geographic distribution of complex avian social behavior on a global scale, while simultaneously examining how the environment influences these geographic patterns."

By combining behavioral and climate data in a statistical modeling framework the researchers found dramatic spatial and environmental variation in social behavior globally. "We discovered 'hot-spots' in places like Australia and Africa where family-living species are overrepresented, as well as 'cold-spots' in places like South and Central America where there are fewer family-living species than we would have expected," said Jetz. This geographic unevenness coincided with the occurrence of specific bird lineages, but also carried a strong signal of environmental and biotic factors. In particular, among year variation, or climatic uncertainty, in rainfall emerged as a key predictor of family-living in birds.

The study demonstrates that even on a global scale, the incidence of complex avian social behavior may be greatly influenced by the consequences of living in unpredictable environments. Variable environments encompass a broad range of climate conditions that pose a greater range of challenges to survival and reproduction than predictable ones. Family-living among birds may therefore be a conservative "'best of a bad job'' strategy to maximize fitness when breeding conditions vary unpredictably from year to year.

"Families act as insurance against environmental uncertainty," said Rubenstein. "Just as predicting a drop in the stock market is difficult, so too is determining when food is going to be scarce." When times are bad and food is difficult to find, joining up to raise young may pay off for both parents and helpers.

This thinking may have implications for an entirely different group of animals: humans. "Think twice," cautions Rubenstein, "before you kick your grown kids out of the house, as you never know when you might need them."

About Columbia University

A leading academic and research university, Columbia continually seeks to advance the frontiers of knowledge and to foster a campus community deeply engaged in understanding and addressing the complex global issues of our time. Columbia's extensive public service initiatives, cultural collaborations, and community partnerships help define the University's underlying values and mission to educate students to be both leading scholars and informed, engaged citizens. Founded in 1754 as King's College, Columbia University in the City of New York is the fifth oldest institution of higher learning in the United States. To learn more, visit www.columbia.edu.

Media contact: Clare Oh, clare.oh@columbia.edu or 212-854-5479

To contact the scientist: Dustin Rubinstein, dr2497@columbia.edu

Clare Oh | EurekAlert!
Further information:
http://www.columbia.edu

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>