Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers show environmental changes may affect vital cooperate bird behaviors

12.01.2011
While scientists believe that climate change and related extreme weather events such as drought and flooding will likely affect the earth's flora and fauna, just how much is not known. A new study by researchers Walter Jetz from Yale University and Dustin Rubenstein from Columbia University however shows an important link between the natural variation in climate conditions and complex behaviors among birds.

The study, which appears in print in Current Biology on Jan. 11, 2011, has implications for understanding how organisms may respond behaviorally to increased climate variability resulting from climate change. They argue that species that live in families may be better guarded against the effects of unpredictable climatic conditions.

Family-living, or cooperative breeding, is common among birds. Cooperative breeding societies, such as humans, are typically characterized by groups of relatives that work together to raise young. Usually, some birds forgo their own reproduction to help raise others' offspring. However, some cooperative breeding societies consist of groups of non-relatives that also work together in raising young. From Australia to the Amazon, cooperatively breeding birds account for approximately 831 species—or nearly 10 percent—of the nearly 10,000 avian species worldwide.

Using a behavioral data set of more than 95 percent of the world's birds, and a global 40-year climate dataset, the researchers examined how environmental factors—like mean and variation in temperature and rainfall—and biotic factors—like body mass, diet breadth and type—influence the incidence and global distribution of family-living in birds.

"Scientists have long known that family-living birds are more common in some parts of the world than others," said Rubenstein, assistant professor of ecology, evolution & environmental biology. "But this is the first time that we have been able to study the geographic distribution of complex avian social behavior on a global scale, while simultaneously examining how the environment influences these geographic patterns."

By combining behavioral and climate data in a statistical modeling framework the researchers found dramatic spatial and environmental variation in social behavior globally. "We discovered 'hot-spots' in places like Australia and Africa where family-living species are overrepresented, as well as 'cold-spots' in places like South and Central America where there are fewer family-living species than we would have expected," said Jetz. This geographic unevenness coincided with the occurrence of specific bird lineages, but also carried a strong signal of environmental and biotic factors. In particular, among year variation, or climatic uncertainty, in rainfall emerged as a key predictor of family-living in birds.

The study demonstrates that even on a global scale, the incidence of complex avian social behavior may be greatly influenced by the consequences of living in unpredictable environments. Variable environments encompass a broad range of climate conditions that pose a greater range of challenges to survival and reproduction than predictable ones. Family-living among birds may therefore be a conservative "'best of a bad job'' strategy to maximize fitness when breeding conditions vary unpredictably from year to year.

"Families act as insurance against environmental uncertainty," said Rubenstein. "Just as predicting a drop in the stock market is difficult, so too is determining when food is going to be scarce." When times are bad and food is difficult to find, joining up to raise young may pay off for both parents and helpers.

This thinking may have implications for an entirely different group of animals: humans. "Think twice," cautions Rubenstein, "before you kick your grown kids out of the house, as you never know when you might need them."

About Columbia University

A leading academic and research university, Columbia continually seeks to advance the frontiers of knowledge and to foster a campus community deeply engaged in understanding and addressing the complex global issues of our time. Columbia's extensive public service initiatives, cultural collaborations, and community partnerships help define the University's underlying values and mission to educate students to be both leading scholars and informed, engaged citizens. Founded in 1754 as King's College, Columbia University in the City of New York is the fifth oldest institution of higher learning in the United States. To learn more, visit www.columbia.edu.

Media contact: Clare Oh, clare.oh@columbia.edu or 212-854-5479

To contact the scientist: Dustin Rubinstein, dr2497@columbia.edu

Clare Oh | EurekAlert!
Further information:
http://www.columbia.edu

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>