Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers reveal Epstein-Barr virus protein contributes to cancer

07.10.2008
Researchers at the University of Toronto have discovered that the EBNA1 protein of Epstein-Barr virus (EBV) disrupts structures in the nucleus of nasopharyngeal carcinoma (NPC) cells, thereby interfering with cellular processes that normally prevent cancer development.

The study findings are published in the October 3rd edition of the journal PLoS Pathogens and describes a novel mechanism by which viral proteins contribute to carcinogenesis.

EBV is a common herpes virus whose latent infection is strongly associated with several types of cancer including NPC, a tumor that is endemic in several parts of the world. With NPC only a few EBV proteins are expressed, including EBNA1. EBNA1 is required for the persistence of the EBV genomes; however, whether or not EBNA1 directly contributes to the development of tumors has not been clear, until now.

The study conducted by Lori Frappier a professor of molecular genetics and her team at the University of Toronto examined PML nuclear bodies and proteins in EBV-positive and EBV-negative NPC cells. Manipulation of EBNA1 levels in each cell type clearly showed that EBNA1 expression induces the loss of PML proteins and PML nuclear bodies through an association of EBNA1 with the PML bodies. PML nuclear bodies are known to have tumor-suppressive effects due to their roles in regulating DNA repair and programmed cell death, and accordingly, EBNA1 was shown to interfere with these processes.

"The findings support an important role for EBNA1 in the development of NPC, in which EBNA1-mediated disruption of PML nuclear bodies promotes the survival of cells with DNA damage," said Frappier. "Since EBNA1 is expressed in all EBV-associated tumors, including B-cell lymphomas and gastric carcinoma, these findings raise the possibility that EBNA1 could play a similar role in the development of these cancers. The cellular effects of EBNA1 in other EBV-induced cancers will require further investigation."

Lori Frappier | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>