Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers report new autism genes discovered

10.06.2010
University of Illinois at Chicago researchers are part of an international consortium working with Autism Speaks, the world's largest autism science and advocacy organization, which today reports new autism genetic discoveries.

The results, from the second phase of the collaborative Autism Genome Project, are published in the June 10 issue of the journal Nature.

Autism is a complex neurobiological disorder that inhibits a person's ability to communicate and develop social relationships, and is often accompanied by behavioral challenges. Autism spectrum disorders are diagnosed in one in 110 children in the U.S., affecting four times as many boys as girls.

The new report shows that individuals with autism tend to carry more sub-microscopic insertions and deletions called copy-number variants (CNV) in their genome than nonautistic people do. Some of these CNV appeared to be inherited, while others are considered new because they are found only in affected offspring and not in the parents. Taken together, more of the CNVs disrupt genes previously reported to be implicated in intellectual disability without autism or in autism than expected by chance.

The findings are based on analysis of high-density genotyping data collected from 1,000 individuals with autism spectrum disorder (ASD) and 1,300 without ASD.

The new study also identified new autism susceptibility genes including SHANK2, SYNGAP1, DLGAP2 and the X-linked DDX53–PTCHD1 locus. Some of these genes belong to synapse-related pathways, while others are involved in cellular proliferation, projection and motility, and intracellular signaling, functional targets that may lead to the development of new treatment approaches.

These findings further support an emerging consensus within the scientific community that autism is caused in part by many "rare variants" or genetic changes found in less than 1 percent of the population. While each of these variants may only account for a small fraction of the cases, collectively they are starting to account for a greater percentage of individuals in the autism community, as well as providing insights into possible common pathogenic mechanisms.

The overlap between autism susceptibility genes and genes previously implicated in intellectual disabilities further supports the hypothesis that at least some genetic risk factors are shared by different psychiatric developmental disabilities. The identification of these biological pathways points to new avenues of scientific investigation, as well as potential targets for the development of novel treatments, according to the authors.

"These results are another step on the long path to sufficiently understanding autism to further develop treatments for the core symptoms of autism," says Dr. Edwin Cook, UIC professor of psychiatry.

"At the Autism Center of Excellence at UIC, we continue to work to understand the genetics, neurobiology, and treatment of autism," he said.

The Autism Center of Excellence continues to recruit subjects into its study of compulsive behavior in autism. More information is available at www.psych.uic.edu/ldn/autism.htm or by calling (312) 413-4624. The UIC Autism Center of Excellence is supported in part by a grant from the Eunice Kennedy Shriver National Institute Of Child Health & Human Development of the National Institutes of Health.

The Autism Genome Project is an international autism genetics research consortium co-funded by Autism Speaks, the Medical Research Council, Canadian Institutes of Health Research, Health Research Board (Ireland), Genome Canada and the Hilibrand Foundation. The project consists of 120 scientists from more than 60 institutions in 11 countries who formed a first-of-its-kind autism genetics consortium.

The project plans to further investigate rare variants, requiring larger sample sets to identify more CNV. Additional support for Phase 2 of the AGP was provided by the National Institutes of Health. The first phase of the project, the assembly of the largest-ever autism DNA collection and whole-genome linkage scan, was funded by Autism Speaks and the National Institutes of Health and completed in 2007.

Sherri McGinnis González | EurekAlert!
Further information:
http://www.uic.edu

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>