Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Report Novel Approach for Single Molecule Electronic DNA Sequencing

24.09.2012
DNA sequencing is the driving force behind key discoveries in medicine and biology. For instance, the complete sequence of an individual’s genome provides important markers and guidelines for medical diagnostics and healthcare.

Up to now, the major roadblock has been the cost and speed of obtaining highly accurate DNA sequences. While numerous advances have been made in the last 10 years, most current high-throughput sequencing instruments depend on optical techniques for the detection of the four building blocks of DNA: A, C, G and T.

To further advance the measurement capability, electronic DNA sequencing of an ensemble of DNA templates has also been developed. Recently, it has been shown that DNA can be threaded through protein nanoscale pores under an applied electric current to produce electronic signals at single molecule level.

However, because the four nucleotides are very similar in their chemical structures, they cannot easily be distinguished using this technique. Thus, the research and development of a single-molecule electronic DNA sequencing platform is the most active area of investigation and has the potential to produce a hand-held DNA sequencer capable of deciphering the genome for personalized medicine and basic biomedical research.

Schematic of single molecule DNA sequencing by a nanopore with phosphate-tagged nucleotides. Each of the four nucleotides will carry a different tag. During SBS, these tags, attached via the terminal-phosphate of the nucleotide, will be released into the nanopore one at a time where they will produce unique current blockade signatures for sequence determination. A large array of such nanopores will lead to high throughput DNA sequencing.

A team of researchers at Columbia University, headed by Dr. Jingyue Ju (the Samuel Ruben-Peter G. Viele Professor of Engineering, Professor of Chemical Engineering and Pharmacology, Director of the Center for Genome Technology and Biomolecular Engineering), with colleagues at the National Institute of Standards and Technology (NIST) led by Dr. John Kasianowicz (Fellow of the American Physical Society), have developed a novel approach to potentially sequence DNA in nanopores electronically at single molecule level with single-base resolution. This work, entitled “PEG-Labeled Nucleotides and Nanopore Detection for Single Molecule DNA Sequencing by Synthesis” is now available in the open access online journal, Scientific Reports (2, 684 DOI:10.1038/srep00684, 2012),from the Nature Publication group.

The reported nanopore-based sequencing by synthesis (Nano-SBS) strategy can accurately distinguish four DNA bases by detecting 4 different sized tags released from 5’-phosphate-modified nucleotides at the single molecule level for sequence determination. The basic principle of the Nano-SBS strategy is described as follows. As each nucleotide analog is incorporated into the growing DNA strand during the polymerase reaction, its tag is released by phosphodiester bond formation. The tags will enter a nanopore in the order of their release, producing unique ionic current blockade signatures due to their distinct chemical structures, thereby determining DNA sequence electronically at single molecule level with single base resolution. As proof-of-principle, the research team attached four different length polymer tags to the terminal phosphate of 2’-deoxyguanosine-5’-tetraphosphate (a modified DNA building block) and demonstrated efficient incorporation of the nucleotide analogs during the polymerase reaction, as well as better than baseline discrimination among the four tags at single molecule level based on their nanopore ionic current blockade signatures. This approach coupled with polymerase attached to the nanopores in an array format should yield a single-molecule electronic Nano-SBS platform.

In previous work, the Center of Genome Technology & Biomolecular Engineering at Columbia University, led by Professor Ju and Dr. Nicholas J. Turro (William P. Schweitzer Professor of Chemistry), developed a four-color DNA sequencing by synthesis (SBS) platform using cleavable fluorescent nucleotide reversible terminators (NRT), which is licensed to Intelligent Bio-Systems, Inc., a QIAGEN company. SBS with cleavable fluorescent NRTs is the dominant approach used in the next generation DNA sequencing systems. Dr. Kasianowicz and his group at NIST pioneered the investigation of nanopores for single molecule analysis. They previously reported that different length polymers, polyethylene glycols (PEGs), could be distinguished by their unique effects on current readings in a á-hemolysin protein nanopores at single molecule level and subsequently developed a theory for the method. Their results provide the proof-of-concept for single molecule mass spectrometry. The combination of the SBS concept with the distinct nanopore-detectable electronic tags to label DNA building blocks led to the development of the single-molecule electronic Nano-SBS approach described the current Scientific Reports article (09/21/2012).

As lead author Dr. Shiv Kumar points out, “The novelty of our approach lies in the design and use of four differently tagged nucleotides, which upon incorporation by DNA polymerase, release four different size tags that are distinguished from each other at the single molecule level when they pass through the nanopore. This approach overcomes any constraints imposed by the small differences among the four nucleotides, a challenge which most nanopore sequencing methods have faced for decades.” Moreover, the technique is quite flexible; with PEG tags as prototypes, other chemical tags can be chosen to provide optimal separation in different nanopore systems.

With further development of this Nano-SBS approach, such as the use of large arrays of protein or solid nanopores, this system has the potential to accurately sequence an entire human genome rapidly and at low cost, thereby enabling it to be used in routine medical diagnoses.

The authors of the Scientific Reports article were Shiv Kumar, Chuanjuan Tao, Minchen Chien, Brittney Hellner, Arvind Balijepalli, Joseph W.F. Robertson, Zengmin Li, James J. Russo, Joseph E. Reiner, John J. Kasianowicz, and Jingyue Ju. The study was supported by a grant from the National Institutes of Health, a National Research Council/NIST/NIH Research Fellowship, and a grant from the NIST Office of Law Enforcement Standards.

Beth Kwon | EurekAlert!
Further information:
http://www.columbia.edu

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>