Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers use neutrons to spy on the elusive hydronium ion

09.08.2011
Los Alamos team sees unprecedented proof of ion's role in enzymatic process

A Los Alamos National Laboratory research team has harnessed neutrons to view for the first time the critical role that an elusive molecule plays in certain biological reactions. The effort could aid in treatment of peptic ulcers or acid reflux disease, or allow for more efficient conversion of woody waste into transportation fuels.

In a paper appearing this week in Angewandte Chemie International Edition, Los Alamos researchers join an international team in describing the role played by the elusive hydronium ion in the transfer of protons during enzyme-catalyzed reactions.

Prior to this research, no one has ever directly witnessed the role of the hydronium ion, a water molecule bound to an additional hydrogen ion, in macromolecular catalysts—the catalytic mechanisms of enzymes.

Researchers took an interest in an enzyme that has the potential to allow conversion of sugars in woody biomass into alcohol, a potential alternative fuel, because the enzyme loses its effectiveness when the pH value of the milieu is lowered—a common occurrence in the interior of industrial yeast cells fermenting alcohol. As it turns out, this biochemical reaction also has ramifications for the activation of proton pumps in the stomach, which produces excess acid in those afflicted by gastric diseases.

The scientists sought to figure out the mechanism behind these reactions. Neutrons from the Los Alamos Neutron Science Center provided a possible tool for unveiling the secret agent at the heart of the chemistry.

Hydronium ions had not been seen before by researchers who attempted to use X-rays to understand the chemical mechanism of enzymes. This is because tiny hydrogen atoms are essentially invisible under X-rays. To help make things visible, the researchers substituted hydrogen in their enzyme samples with deuterium, an isotope of hydrogen that behaves chemically identical to its nonisotopic counterpart. Deuterium yields a clear signal when bombarded with neutrons. Therefore, neutrons provided a perfect method for uncloaking the elusive hydronium ions, which appeared as a pyramid-shaped mass in the enzyme's active site where the chemical reaction occurs.

The researchers discovered a crucial change as the system they were studying fell into the acidic range of the pH scale (below 6). The hydronium ion that could be seen facilitating the binding of a metal ion cofactor crucial to the conversion of the sugar molecule into its fermentable form suddenly became dehydrated—think of water, H2O, being removed from hydronium, H3O+. The space occupied by the relatively large hydronium ion collapsed into a tiny volume occupied by the remaining proton (a positively charged hydrogen ion, H+). This spatial change in the molecular structure prevented the sugar from being attacked by the enzyme.

The observed phenomenon provided an answer about why pH plays such an important role in the process and renders the enzyme inactive under acidic conditions. More important, it definitively illustrated that the hydronium ion plays a key role in the transport of protons in these types of biochemical systems.

"This is something that has never been seen before," said Los Alamos researcher Andrey Kovalevsky, principal author of the paper. "This proves that hydronium is the active chemical agent in our studies of the catalytic mechanism of enzymes."

The research has broad implications for the possible role of hydronium ions in other biological systems. In addition to acid reflux disease, the research may help provide a better understanding of metabolic transfer of energy in living cells or living organisms.

Other members of the Los Alamos research team include Suzanne Fisher, Marat Mustyakimov, Thomas Yoshida, and Paul Langan (currently at Oak Ridge National Laboratory).

Other institutions involved in the effort are the University of Toledo, Ohio; the Institut Laue Langevin, Grenoble, France; Keele University, Staffordshire, England; and the ISIS facility Oxfordshire, England.

Los Alamos funding for the research came, in part, from the Laboratory's Directed Research and Development Program (LDRD) and the U.S. Department of Energy's Office of Biological and Environmental Research (DOE-OBER). Funding was also provided through the National Institutes of Health.

The paper can be seen at: http://onlinelibrary.wiley.com/doi/10.1002/anie.201101753/abstract

About Los Alamos National Laboratory (www.lanl.gov)

Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is operated by Los Alamos National Security, LLC, a team composed of Bechtel National, the University of California, The Babcock & Wilcox Company, and URS for the Department of Energy's National Nuclear Security Administration.

Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health, and global security concerns.

James E. Rickman | EurekAlert!
Further information:
http://www.lanl.gov

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>