Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify new drug target for treating jet lag and shift work disorders

02.09.2013
University of Notre Dame researchers, as part of a collaborative effort, have identified a protein that potentially could be a target for drugs that that would help people recover faster from jet lag and better adjust their circadian rhythms during rotational shift work.

The study appears in the Aug. 29th issue of the journal Cell. It can be found at: http://www.sciencedirect.com/science/article/pii/S0092867413009616

An internal circadian body clock helps virtually all creatures synchronize their bodily functions to the 24-hour cycle of light and dark in a day. However, travel to a different time zone, or shift work, disrupts the body's clock. Furthermore, it can take up to a day for the body to adjust to each hour that the clock is shifted, resulting in several days of fatigue, indigestion, poorer cognitive performance and sleep disturbance.

Giles Duffield, associate professor of biological sciences at Notre Dame and a member of the University's Eck Institute for Global Health, and Kevin Flanagan, a University alumnus and now a doctoral student at Washington University in St. Louis, characterized the protein SIK1, revealing that it plays a pivotal role in preventing the body from adjusting too quickly to changes in the environment.

Duffield and Flanagan, along with researchers from University of Oxford and F. Hoffman La Roche, and led by senior research scientist Stuart Peirson at the Nuffield Department of Clinical Neurosciences, identified roughly 100 genes that the body switches on in response to light, initiating a series of events that help to retune the body clock. They identified one gene and its corresponding protein product, called SIK1, that limits the body clock's ability to adjust to changes in the daily patterns of light and dark. In one particular experiment, when the researchers blocked the activity of SIK1 in laboratory mice, the mice adjusted faster to changes in the light-dark cycle that mimic a time zone change. The study proposes that the light-stimulated production of SIK1 in turn switches off the molecular pathway that feeds into the clock mechanism, thereby halting the shifting response of the biological clock.

"Our key contribution to the project was to manipulate the SIK1 protein pharmacologically, and we revealed that such blockage of the protein's activity in combination with exposure to a natural clock resetting agent, such as light, enhanced the clock shifting response," Duffield said. "For example, a one hour shift of the clock became two hours. We also showed this effect in both peripheral tissues as well as in the clock in the brain.

"It would appear that SIK1 plays a common role in our circadian clocks found throughout our body, and working as a hand-brake on our ability to shift our biorhythms and adjust to new time zones, whether these are real or artificial, such as those produced during shift work schedules."

In addition to the inconvenience of jet lag, disruptions in the circadian system, such as produced during shift work, have been linked to many diseases including diabetes, heart disease and cancer. Disturbances of the circadian clock have even been linked to mental disorders, such as schizophrenia, bipolar disease and seasonal affective disorder, also known as winter depression. It is important to note that approximately 16 percent of the U.S. and European workforces undertake some form of shift work.

"Having such a hand-break on the circadian clock systems makes sense so as to prevent excessive responses to environmental change, and that it is only in our modern 24-hour society, with Thomas Edison's light bulbs, Nikola Tesla's electricity, and jet airplanes, that we begin to realize our biological limitations," Duffield said.

The researchers' identification of the role SIK1 plays in the body clock offers a tractable target for drugs that could help us adjust faster to changes in time zone and help ameliorate the effects of rotational shift work.

"The fact that it is a kinase enzyme makes it an attractive target for the design of novel therapeutics," Duffield added.

Flanagan worked on the project as an undergraduate student, writing an honor thesis on his research data and presented his work at the Society for Research on Biological Rhythms meeting in 2012.

"Being involved in this project as an undergraduate student and presenting my data at an international conference really crystalized my interest in scientific research as a career," Flanagan said.

The Wellcome Trust, F. Hoffman La Roche and the National Institute of General Medical Sciences funded the research. Flanagan's participation was funded by a National Science Foundation Research Experiences for Undergraduates (REU) grant.

Giles Duffield | EurekAlert!
Further information:
http://www.nd.edu

More articles from Life Sciences:

nachricht Molecular evolution: How the building blocks of life may form in space
26.04.2018 | American Institute of Physics

nachricht Multifunctional bacterial microswimmer able to deliver cargo and destroy itself
26.04.2018 | Max-Planck-Institut für Intelligente Systeme

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>