Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find snippet of RNA that helps make individuals remarkably alike

08.05.2009
"No two people are alike." Yet when we consider the thousands of genes with frequent differences in genetic composition among different people, it is remarkable how much alike we are.

Uniformity, or singleness of form, is not unique to humans but a general property of life. Biologists have long pondered how this feature is produced in the face of such great variation in genetics as well as environmental conditions.

Northwestern University researchers now have identified a type of molecule that plays a specific role in maintaining uniformity: a little snippet of RNA called a microRNA. They found that a microRNA called miR-7 is critical to the robustness of the molecular network that helps regulate uniformity.

The findings are published online by the journal Cell and also are featured in a Cell podcast: http://www.cell.com/. This knowledge could lead to a better understanding of the workings of cancer cells, which do not act in controllable, uniform ways.

The Northwestern research builds on an idea that originated in the 1940's: Molecules within cells of the body work together in networks, each molecule interconnected with others.

"When something is changed, say the genetic sequence of a molecule or the temperature of the organism, the network responds to compensate for the change and keep things intact," said Richard W. Carthew, Owen L. Coon Professor of Molecular Biology in the Weinberg College of Arts and Sciences at Northwestern. Carthew led the research. "This design is similar to the principle that engineers use to design safety features into products."

There are hundreds of different types of microRNAs in animals. Their function is to dampen or shut down the production of proteins in the body. The Carthew group found one of these microRNAs, miR-7, dampens production of proteins that work in the same networks as miR-7.

In a study of Drosophila, when the researchers eliminated miR-7, the networks remained intact but only under uniform environmental conditions. When the researchers perturbed the environment by modulating the temperature, the networks failed to keep things intact, and animals suffered from developmental defects. If the microRNA was present, however, the networks resisted the temperature fluctuation, and animals were normal and healthy.

MicroRNAs, found in all plants and animals, may have evolved as tiny buffers within multicellular organisms to allow the remarkable unity of form in a constantly changing environment.

"This idea has health implications as well," said Carthew. "Cancer cells are notoriously heterogeneous and do not act in controllable ways. Interestingly, microRNAs are among the most frequently mutated targets in cancers, leading some to speculate that their absence is linked to cancer's heterogeneous behavior."

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>