Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find snippet of RNA that helps make individuals remarkably alike

08.05.2009
"No two people are alike." Yet when we consider the thousands of genes with frequent differences in genetic composition among different people, it is remarkable how much alike we are.

Uniformity, or singleness of form, is not unique to humans but a general property of life. Biologists have long pondered how this feature is produced in the face of such great variation in genetics as well as environmental conditions.

Northwestern University researchers now have identified a type of molecule that plays a specific role in maintaining uniformity: a little snippet of RNA called a microRNA. They found that a microRNA called miR-7 is critical to the robustness of the molecular network that helps regulate uniformity.

The findings are published online by the journal Cell and also are featured in a Cell podcast: http://www.cell.com/. This knowledge could lead to a better understanding of the workings of cancer cells, which do not act in controllable, uniform ways.

The Northwestern research builds on an idea that originated in the 1940's: Molecules within cells of the body work together in networks, each molecule interconnected with others.

"When something is changed, say the genetic sequence of a molecule or the temperature of the organism, the network responds to compensate for the change and keep things intact," said Richard W. Carthew, Owen L. Coon Professor of Molecular Biology in the Weinberg College of Arts and Sciences at Northwestern. Carthew led the research. "This design is similar to the principle that engineers use to design safety features into products."

There are hundreds of different types of microRNAs in animals. Their function is to dampen or shut down the production of proteins in the body. The Carthew group found one of these microRNAs, miR-7, dampens production of proteins that work in the same networks as miR-7.

In a study of Drosophila, when the researchers eliminated miR-7, the networks remained intact but only under uniform environmental conditions. When the researchers perturbed the environment by modulating the temperature, the networks failed to keep things intact, and animals suffered from developmental defects. If the microRNA was present, however, the networks resisted the temperature fluctuation, and animals were normal and healthy.

MicroRNAs, found in all plants and animals, may have evolved as tiny buffers within multicellular organisms to allow the remarkable unity of form in a constantly changing environment.

"This idea has health implications as well," said Carthew. "Cancer cells are notoriously heterogeneous and do not act in controllable ways. Interestingly, microRNAs are among the most frequently mutated targets in cancers, leading some to speculate that their absence is linked to cancer's heterogeneous behavior."

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>