Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find key step in body's ability to make red blood cells

02.08.2010
Researchers at UT Southwestern Medical Center have uncovered a key step in the creation of new red blood cells in an animal study.

They found that a tiny fragment of ribonucleic acid (RNA), a chemical cousin of DNA, prompts stem cells to mature into red blood cells. The researchers also created an artificial RNA inhibitor to block this process.

Such interventions, if fruitful in humans, might be useful against some cancers and other diseases, such as polycythemia vera, in which the body produces a life-threatening excess of blood cells. Conversely, a drug that boosts red blood cell production might be useful against anemia, blood loss or altitude sickness.

"The important finding is that this microRNA, miR-451, is a powerful natural regulator of red blood cell production," said Dr. Eric Olson, chairman of molecular biology at UT Southwestern and senior author of the study, which appears in the Aug. 1 issue of Genes & Development.

"We also showed that a man-made miR-451 inhibitor can reduce miR-451 levels in a mouse and block blood-cell production. We hope that this inhibitor and similarly functioning molecules might lead to new drugs against the fatal disease polycythemia vera, which currently has no therapies," said Dr. Olson, who directs the Nancy B. and Jake L. Hamon Center for Basic Research in Cancer and the Nearburg Family Center for Basic and Clinical Research in Pediatric Oncology.

Red blood cells, which carry oxygen throughout the body, are created in bone marrow from stem cells. The body steps up its production of red blood cells in response to stresses such as anemia, blood loss or low oxygen, but overproduction of the cells increases the risk of stroke and blood clots.

RNA molecules, found throughout cells, perform several jobs. MicroRNAs often bind to and disable other types of RNA, preventing them from carrying out their functions.

Dr. Olson and his colleagues study many different types of microRNAs to determine their functions and to find therapeutic uses of artificial microRNAs.

"miR-451 is found in great abundance in mature red blood cells, but its function was not known," said lead author David Patrick, a graduate student in molecular biology.

In the new study, the scientists created genetically engineered mice that could not make miR-451. The mice had a lowered red blood cell count and also had difficulty creating more red blood cells under conditions that usually stimulate production.

miR-451 works by interacting with another RNA involved in producing a protein called 14-3-3-zeta, which plays a role in the maturation of many types of cells, the researchers found.

The team also treated blood stem cells with an artificial RNA designed to inhibit miR-451. As a result, the number of red blood cells decreased.

Dr. Olson and his colleagues are pursuing a patent on miR-451 inhibitors and studying whether a microRNA-based drug might be useful in treating several blood-related disorders.

Other UT Southwestern researchers involved in the study were Dr. Cheng Zhang, assistant professor of physiology and developmental biology; Xiaoxia Qi, research scientist in molecular biology; and Dr. Lily Jun-Shen Huang, assistant professor of cell biology. Researchers from Texas A&M Health Science Center, Houston; Texas Heart Institute, Houston; and the University of Houston also participated.

The study was funded by the National Institutes of Health, the Welch Foundation and the American Heart Association – Jon Holden DeHaan Foundation.

This news release is available on our World Wide Web home page at http://www.utsouthwestern.edu/home/news/index.html

To automatically receive news releases from UT Southwestern via e-mail, subscribe at www.utsouthwestern.edu/receivenews

Aline McKenzie | EurekAlert!
Further information:
http://www.utsouthwestern.edu

Further reports about: Foundation Heart Olson RNA RNA molecule blood cell health services red blood cells stem cells

More articles from Life Sciences:

nachricht First-of-its-kind chemical oscillator offers new level of molecular control
15.12.2017 | University of Texas at Austin

nachricht New technique could make captured carbon more valuable
15.12.2017 | DOE/Idaho National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

New technique could make captured carbon more valuable

15.12.2017 | Life Sciences

First-of-its-kind chemical oscillator offers new level of molecular control

15.12.2017 | Life Sciences

A chip for environmental and health monitoring

15.12.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>