Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Discover Potential Genetic Target for Heart Disease

18.11.2010
Researchers at UC have found a potential genetic target for heart disease, which could lead to therapies to prevent the development of the nation’s No. 1 killer in its initial stages.

These findings will be presented for the first time at the American Heart Association’s (AHA) Scientific Sessions in Chicago Nov. 17.

The study, led by WenFeng Cai, PhD, a postdoctoral fellow under the direction of Litsa Kranias, PhD, AHA distinguished scientist and Hanna Chair in Cardiology in the department of pharmacology and cell biophysics, shows that a micro-RNA, known as miR765, which regulates gene expressions, can down-regulate the expression of protein phosphatase 1 inhibitor-1 (I-1) and reduce the contractility of cells that make up cardiac muscle.

"Previous studies have shown that the reduction in I-1 expression may play a role in the pathogenesis of heart disease,” Cai says. "However, the underlying molecular mechanism contributing to this down-regulation is unknown.

"We wanted to see if miR765 would serve as a candidate to regulate this protein expression and affect the contractility of the cardiac muscle cells.”

Using a gene transfer agent—or virus—researchers moved either miR-765 or a control agent into ventricular cells of animal models.

Data showed that the expression of I-1 messenger RNA was decreased by 20 percent in the miR765 cells of these models when compared with the control models.

"Under resting conditions, the contractile parameters were decreased in miR765-treated animal models,” Cai says. "Although beta adrenergic agonist, used to speed up the pumping action of the heart, had a positive effect, the contractile function remained suppressed in the miR765 group.”

Cai adds that analysis showed both phosphorylations of phospholamban and ryanodine receptor, the proteins that regulate calcium uptake and calcium release, were significantly reduced in the miR765 group both in the presence and in the absence of beta adrenergic agonist.

"These findings show that miR765 can down-regulate the expression and reduce contractility of heart cells by decreasing or deactivating a number of proteins that help the heart function at full capacity,” Cai says. "This leads us to believe that miR765 may play a role in the development of heart failure.

"Hopefully, these findings will lead to future studies, helping researchers and clinicians develop a therapeutic target to stop heart disease where it first starts: in the genes.”

This study was funded by the National Institutes of Health.

Katie Pence | EurekAlert!
Further information:
http://www.uc.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>