Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Discover New Mechanism Behind Cellular Energy Conversion

20.08.2010
Researchers from Mount Sinai School of Medicine have enhanced our understanding of the mechanism by which cells achieve energy conversion, the process in which food is converted into the energy required by cells. This groundbreaking research helps scientists gain atomic-level insight into how organisms synthesize their major form of chemical energy. The researchers’ findings were published in the August issue of PLoS Biology.

Cells use the enzyme ATP synthase to generate a chemical called ATP, the form of energy cells use to function. Structurally, ATP synthase is a nano-machine, a cellular “motor” that consists of proton turbines, or rotor rings, with the output being ATP. The investigators wanted to find out more about how these ATP synthase rotors work.

David Hicks, PhD, Assistant Professor of Pharmacology & Systems Therapeutics and Terry Krulwich, PhD, Sharon & Frederick A. Klingenstein-Nathan G. Kase, MD Professor of Pharmacology & Systems Therapeutics, led the Mount Sinai-based part of the effort. They and their co-investigators, Thomas Meier, PhD, and two members of his research team at the Max Planck Institute of Biophysics in Germany, grew three-dimensional protein crystals of an unusually stable rotor found in bacteria called Bacillus pseudofirmus and evaluated them using X-ray technology.

The researchers were surprised to find that these ATP synthase rotor rings use a water molecule as part of the rotary mechanism of ATP synthesis, providing a clearer understanding of how these nano-machines function. Previous studies of a rotor from a blue-green alga, the only other proton-moving rotor observed at this atomic level, showed that it did not use a water molecule.

With this new insight, they were able to infer how ATP synthase captures the protons that drive the rotation of the “motor” and visualize how those protons remain bound to the rotor. This discovery has added interest because the rotor structure of these bacteria is similar in some ways to the motors driving ATP synthesis in human cells and pathogens like the tuberculosis bacteria.

“We are excited about the broad implications of these data in helping us move toward a more detailed model of the mechanisms of action behind cellular energy conversion,” said Dr. Krulwich. “These findings provide a launching pad for better understanding a basic life process in organisms ranging from bacteria to humans. We look forward to studying this development further.”

Drs. Hicks and Krulwich and the Meier team will continue studying this finding and plan to further evaluate these cellular nano-machines. Working with this discovery, they will next evaluate mutations or malfunctions in the ATP synthase rotor.

This research is supported by the National Institute of General Medical Studies of the National Institutes of Health.

About The Mount Sinai Medical Center

The Mount Sinai Medical Center encompasses both The Mount Sinai Hospital and Mount Sinai School of Medicine. Established in 1968, Mount Sinai School of Medicine is one of few medical schools embedded in a hospital in the United States. It has more than 3,400 faculty in 32 departments and 15 institutes, and ranks among the top 20 medical schools both in National Institute of Health funding and by U.S. News & World Report. The school received the 2009 Spencer Foreman Award for Outstanding Community Service from the Association of American Medical Colleges.

The Mount Sinai Hospital, founded in 1852, is a 1,171-bed tertiary- and quaternary-care teaching facility and one of the nation’s oldest, largest and most-respected voluntary hospitals. In 2009, U.S. News & World Report ranked The Mount Sinai Hospital among the nation’s top 20 hospitals based on reputation, patient safety, and other patient-care factors. Nearly 60,000 people were treated at Mount Sinai as inpatients last year, and approximately 530,000 outpatient visits took place.

For more information, visit www.mountsinai.org.
Follow us on Twitter @mountsinainyc.

Mount Sinai Press Office | Newswise Science News
Further information:
http://www.mssm.edu
http://www.mountsinai.org

More articles from Life Sciences:

nachricht Matabele ants: Travelling faster with detours
21.05.2018 | Julius-Maximilians-Universität Würzburg

nachricht Asian tiger mosquito on the move
20.05.2018 | Goethe-Universität Frankfurt am Main

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>