Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover female spiders produce mating plugs to prevent unwanted sex from males

02.08.2012
Scientists at the Smithsonian and their colleagues have discovered a new mechanism of animal mating plug production.

In the giant wood spider Nephila pilipes, a highly sexually dimorphic and polygamous species, many small males compete with one other for access to a few huge females. During copulation these males are known to sever their own genitals in an attempt to plug the female, thereby gaining paternity advantage by preventing other males from mating with her.

Until recently however, nothing has been known about the origin and function of additional and very solid plugs researchers have observed that also commonly cover female genitals in this species. Now biologists have discovered the origin of this additional other plugging mechanism.

The international team of scientists who published their findings in the July 19 issue of the journal PLoS ONE, consists of Matjaž Kuntner, research associate at the Smithsonian's National Museum of Natural History and chair of the Institute of Biology at the Scientific Research Centre, Slovenian Academy of Sciences and Arts; Daiqin Li, associate professor at the Department of Biological Sciences, National University of Singapore, and doctoral students Matjaž Gregoriè and Shichang Zhang, and postdoc Simona Kralj-Fišer.

Before the trials the researchers speculated that the additional mystery plugs commonly found covering female genitals might be produced by the copulating male, or the female, or perhaps both spider sexes. The researchers tested these possibilities by staging laboratory mating trials with varying degrees of females mating with multiple males. They observed that no plugs were ever formed during mating trials, but instead, females exposed to many males produced the amorphous plugs during the egg-laying process.

These plugs, when hardened, prevented subsequent copulation. The authors conclude that the newly discovered "self-plugging" mechanism represents a female adaptation to sexual conflict through the prevention of unwanted and excessive copulations.

John Gibbons | EurekAlert!
Further information:
http://www.si.edu

More articles from Life Sciences:

nachricht Oestrogen regulates pathological changes of bones via bone lining cells
28.07.2017 | Veterinärmedizinische Universität Wien

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>