Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover 3 genes that increase risk of severe obesity in kids and adults

21.01.2009
McGill scientists play key role in international genome-wide association study

European and Canadian researchers have, for the first time, drawn a map of genetic risk factors that can lead to two forms of severe obesity: early-onset obesity in children, and morbid obesity in adults.

A genetic study of 1,380 Europeans with early-onset and morbid adult obesity was led by French researchers Dr. David Meyre, of the Institut national de la santé et de la recherche médicale (Inserm), and Dr. Philippe Froguel, director of the Centre National de la Recherche Scientifique (CNRS). Dr. Rob Sladek, Dr. Constantin Polychronakos and Dr. Alexandre Montpetit, of McGill University and the McGill University and Génome Québec Innovation Centre, made key contributions to the discovery, along with researchers from France, Britain, Finland, Switzerland and Germany.

The results were published Jan. 19 in the journal Nature Genetics. Finding the genetic cause of a medical problem can often lead researchers along the right path toward an eventual treatment or cure or to help identify people who might be at risk.

"The idea was not just to look at run-of-the-mill obesity, but look for genetic factors that may affect people who have more severe problems with their weight," said Dr. Sladek, an assistant professor in the Department of Human Genetics and Endocrinology. "This includes children who become obese at a young age, before the age of six. We also studied the genomes of adults who had a familial history of severe obesity, with a body-mass index greater than 40." People are generally defined as "overweight" if they have a body-mass index greater than 25.

"The family approach being undertaken by our collaboration with our colleagues in France is going to become important for future large-scale genetic studies," Sladek continued. "Our suspicion is that a lot of the genetic changes that make people obese will turn out to be variants that run in families or in segments of the population, rather than things that are very common across the population. In terms of diabetes, we think that perhaps 90 per cent of the genetic risk could come from these familial or even personal genetic variants."

"We are proud of this announcement, which once again confirms the scientific excellence and talent of Québec's scientists," said Paul L'Archevêque, President and CEO of Génome Québec. "These findings, which are the direct result of studies co-financed by Génome Québec, clearly show the strategic role of genomics in the search for solutions to improve human health. We would also like to underline the cooperation among the institutes, an initiative that made this major advance possible. Congratulations to the McGill University and Génome Québec Innovation Centre team, and especially to Alexandre Montpetit who trained a group from CNRS on genotyping data analysis on the Illumina platform."

Mark Shainblum | EurekAlert!
Further information:
http://www.mcgill.ca

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>