Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover 3 genes that increase risk of severe obesity in kids and adults

21.01.2009
McGill scientists play key role in international genome-wide association study

European and Canadian researchers have, for the first time, drawn a map of genetic risk factors that can lead to two forms of severe obesity: early-onset obesity in children, and morbid obesity in adults.

A genetic study of 1,380 Europeans with early-onset and morbid adult obesity was led by French researchers Dr. David Meyre, of the Institut national de la santé et de la recherche médicale (Inserm), and Dr. Philippe Froguel, director of the Centre National de la Recherche Scientifique (CNRS). Dr. Rob Sladek, Dr. Constantin Polychronakos and Dr. Alexandre Montpetit, of McGill University and the McGill University and Génome Québec Innovation Centre, made key contributions to the discovery, along with researchers from France, Britain, Finland, Switzerland and Germany.

The results were published Jan. 19 in the journal Nature Genetics. Finding the genetic cause of a medical problem can often lead researchers along the right path toward an eventual treatment or cure or to help identify people who might be at risk.

"The idea was not just to look at run-of-the-mill obesity, but look for genetic factors that may affect people who have more severe problems with their weight," said Dr. Sladek, an assistant professor in the Department of Human Genetics and Endocrinology. "This includes children who become obese at a young age, before the age of six. We also studied the genomes of adults who had a familial history of severe obesity, with a body-mass index greater than 40." People are generally defined as "overweight" if they have a body-mass index greater than 25.

"The family approach being undertaken by our collaboration with our colleagues in France is going to become important for future large-scale genetic studies," Sladek continued. "Our suspicion is that a lot of the genetic changes that make people obese will turn out to be variants that run in families or in segments of the population, rather than things that are very common across the population. In terms of diabetes, we think that perhaps 90 per cent of the genetic risk could come from these familial or even personal genetic variants."

"We are proud of this announcement, which once again confirms the scientific excellence and talent of Québec's scientists," said Paul L'Archevêque, President and CEO of Génome Québec. "These findings, which are the direct result of studies co-financed by Génome Québec, clearly show the strategic role of genomics in the search for solutions to improve human health. We would also like to underline the cooperation among the institutes, an initiative that made this major advance possible. Congratulations to the McGill University and Génome Québec Innovation Centre team, and especially to Alexandre Montpetit who trained a group from CNRS on genotyping data analysis on the Illumina platform."

Mark Shainblum | EurekAlert!
Further information:
http://www.mcgill.ca

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>