Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop improved means of detecting mismatched DNA

16.09.2014

Technique will likely have applications in forensic science and donor organ monitoring

Researchers at Johns Hopkins have identified a highly sensitive means of analyzing very tiny amounts of DNA. The discovery, they say, could increase the ability of forensic scientists to match genetic material in some criminal investigations. It could also prevent the need for a painful, invasive test given to transplant patients at risk of rejecting their donor organs and replace it with a blood test that reveals traces of donor DNA.

In a report in the September issue of The Journal of Molecular Diagnostics, the research team says laboratory tests already show that the new analytical method compares favorably with a widely used DNA comparison technique. The researchers have applied for a patent.

The current method for comparing DNA to determine paternity and advance criminal investigations counts the number of repeats in certain highly repetitive blocks of DNA that are not part of genes. But, says James Eshleman, M.D., Ph.D., a professor of pathology at the Johns Hopkins University School of Medicine, "Repeat testing will only detect DNA that makes up at least 1 percent of a DNA sample, so it's not great for situations in which results depend on small amounts of material within a larger sample."

... more about:
»DNA »Medicine »Molecular »blood »forensic »mutations »transplant

Making comparisons based on common "point mutations," or variations within actual genes, was long considered impractical because of the high costs of DNA sequence testing. But the cost of sequencing has fallen so low in recent years that Eshleman's team revisited the idea.

Choosing a block of DNA with 17 common point mutations in close proximity along the genome, Marija Debeljak, a technician in Eshleman's laboratory, looked for mismatches in various mixtures of lab-grown human cells. "We could detect cells when they made up just .01 percent of the mixture, which is a big improvement over the current method, which can only detect DNA that makes up 1 to 5 percent of a sample," Eshleman says.

In addition to forensic and paternity testing applications, the new method could also potentially be used to monitor the health of bone marrow transplant patients, Eshleman says. Testing transplant patients' blood for low levels of leukemia blood cells could theoretically be used as an early warning system, but current analysis based on the standard repeat testing is not sensitive enough to detect low levels of recurring leukemia DNA in blood.

In contrast, when the researchers tested bone marrow recipients' blood with their new system, they found that it could detect patient DNA. "If we're able to develop this test for commercial use, it could also free some solid-organ transplant recipients of the invasive biopsies that are currently used if rejection is suspected," Eshleman says.

###

Other authors on the paper were Donald N. Freed, Jane A. Welch, Lisa Haley, Katie Beierl, Brian S. Iglehart, Aparna Pallavajjalla, Christopher D. Gocke, Mary S. Leffell, Ming-Tseh Lin, Jonathan Pevsner and Sarah J. Wheelan, all of The Johns Hopkins University.

This study was funded by the Sol Goldman Foundation.

Related articles:

Read the article in The Journal of Molecular Diagnostics.

Read "Johns Hopkins Team Designs SNP-based Haplotype Method for Human Identity Testing" on GenomeWeb.

Read "Sequencing Cancer Mutations - There's an App For That."

Read "Hopkins Scientists Create Method to Personalize Chemotherapy Drug Selection."

Shawna Williams | Eurek Alert!
Further information:
http://www.hopkinsmedicine.org/

Further reports about: DNA Medicine Molecular blood forensic mutations transplant

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>