Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop improved means of detecting mismatched DNA

16.09.2014

Technique will likely have applications in forensic science and donor organ monitoring

Researchers at Johns Hopkins have identified a highly sensitive means of analyzing very tiny amounts of DNA. The discovery, they say, could increase the ability of forensic scientists to match genetic material in some criminal investigations. It could also prevent the need for a painful, invasive test given to transplant patients at risk of rejecting their donor organs and replace it with a blood test that reveals traces of donor DNA.

In a report in the September issue of The Journal of Molecular Diagnostics, the research team says laboratory tests already show that the new analytical method compares favorably with a widely used DNA comparison technique. The researchers have applied for a patent.

The current method for comparing DNA to determine paternity and advance criminal investigations counts the number of repeats in certain highly repetitive blocks of DNA that are not part of genes. But, says James Eshleman, M.D., Ph.D., a professor of pathology at the Johns Hopkins University School of Medicine, "Repeat testing will only detect DNA that makes up at least 1 percent of a DNA sample, so it's not great for situations in which results depend on small amounts of material within a larger sample."

... more about:
»DNA »Medicine »Molecular »blood »forensic »mutations »transplant

Making comparisons based on common "point mutations," or variations within actual genes, was long considered impractical because of the high costs of DNA sequence testing. But the cost of sequencing has fallen so low in recent years that Eshleman's team revisited the idea.

Choosing a block of DNA with 17 common point mutations in close proximity along the genome, Marija Debeljak, a technician in Eshleman's laboratory, looked for mismatches in various mixtures of lab-grown human cells. "We could detect cells when they made up just .01 percent of the mixture, which is a big improvement over the current method, which can only detect DNA that makes up 1 to 5 percent of a sample," Eshleman says.

In addition to forensic and paternity testing applications, the new method could also potentially be used to monitor the health of bone marrow transplant patients, Eshleman says. Testing transplant patients' blood for low levels of leukemia blood cells could theoretically be used as an early warning system, but current analysis based on the standard repeat testing is not sensitive enough to detect low levels of recurring leukemia DNA in blood.

In contrast, when the researchers tested bone marrow recipients' blood with their new system, they found that it could detect patient DNA. "If we're able to develop this test for commercial use, it could also free some solid-organ transplant recipients of the invasive biopsies that are currently used if rejection is suspected," Eshleman says.

###

Other authors on the paper were Donald N. Freed, Jane A. Welch, Lisa Haley, Katie Beierl, Brian S. Iglehart, Aparna Pallavajjalla, Christopher D. Gocke, Mary S. Leffell, Ming-Tseh Lin, Jonathan Pevsner and Sarah J. Wheelan, all of The Johns Hopkins University.

This study was funded by the Sol Goldman Foundation.

Related articles:

Read the article in The Journal of Molecular Diagnostics.

Read "Johns Hopkins Team Designs SNP-based Haplotype Method for Human Identity Testing" on GenomeWeb.

Read "Sequencing Cancer Mutations - There's an App For That."

Read "Hopkins Scientists Create Method to Personalize Chemotherapy Drug Selection."

Shawna Williams | Eurek Alert!
Further information:
http://www.hopkinsmedicine.org/

Further reports about: DNA Medicine Molecular blood forensic mutations transplant

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>