Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop improved means of detecting mismatched DNA

16.09.2014

Technique will likely have applications in forensic science and donor organ monitoring

Researchers at Johns Hopkins have identified a highly sensitive means of analyzing very tiny amounts of DNA. The discovery, they say, could increase the ability of forensic scientists to match genetic material in some criminal investigations. It could also prevent the need for a painful, invasive test given to transplant patients at risk of rejecting their donor organs and replace it with a blood test that reveals traces of donor DNA.

In a report in the September issue of The Journal of Molecular Diagnostics, the research team says laboratory tests already show that the new analytical method compares favorably with a widely used DNA comparison technique. The researchers have applied for a patent.

The current method for comparing DNA to determine paternity and advance criminal investigations counts the number of repeats in certain highly repetitive blocks of DNA that are not part of genes. But, says James Eshleman, M.D., Ph.D., a professor of pathology at the Johns Hopkins University School of Medicine, "Repeat testing will only detect DNA that makes up at least 1 percent of a DNA sample, so it's not great for situations in which results depend on small amounts of material within a larger sample."

... more about:
»DNA »Medicine »Molecular »blood »forensic »mutations »transplant

Making comparisons based on common "point mutations," or variations within actual genes, was long considered impractical because of the high costs of DNA sequence testing. But the cost of sequencing has fallen so low in recent years that Eshleman's team revisited the idea.

Choosing a block of DNA with 17 common point mutations in close proximity along the genome, Marija Debeljak, a technician in Eshleman's laboratory, looked for mismatches in various mixtures of lab-grown human cells. "We could detect cells when they made up just .01 percent of the mixture, which is a big improvement over the current method, which can only detect DNA that makes up 1 to 5 percent of a sample," Eshleman says.

In addition to forensic and paternity testing applications, the new method could also potentially be used to monitor the health of bone marrow transplant patients, Eshleman says. Testing transplant patients' blood for low levels of leukemia blood cells could theoretically be used as an early warning system, but current analysis based on the standard repeat testing is not sensitive enough to detect low levels of recurring leukemia DNA in blood.

In contrast, when the researchers tested bone marrow recipients' blood with their new system, they found that it could detect patient DNA. "If we're able to develop this test for commercial use, it could also free some solid-organ transplant recipients of the invasive biopsies that are currently used if rejection is suspected," Eshleman says.

###

Other authors on the paper were Donald N. Freed, Jane A. Welch, Lisa Haley, Katie Beierl, Brian S. Iglehart, Aparna Pallavajjalla, Christopher D. Gocke, Mary S. Leffell, Ming-Tseh Lin, Jonathan Pevsner and Sarah J. Wheelan, all of The Johns Hopkins University.

This study was funded by the Sol Goldman Foundation.

Related articles:

Read the article in The Journal of Molecular Diagnostics.

Read "Johns Hopkins Team Designs SNP-based Haplotype Method for Human Identity Testing" on GenomeWeb.

Read "Sequencing Cancer Mutations - There's an App For That."

Read "Hopkins Scientists Create Method to Personalize Chemotherapy Drug Selection."

Shawna Williams | Eurek Alert!
Further information:
http://www.hopkinsmedicine.org/

Further reports about: DNA Medicine Molecular blood forensic mutations transplant

More articles from Life Sciences:

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

nachricht Scientists generate an atlas of the human genome using stem cells
24.04.2018 | The Hebrew University of Jerusalem

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Silicon as a new storage material for the batteries of the future

25.04.2018 | Power and Electrical Engineering

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>