Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Demonstrate Control of Devastating Cassava Virus in Africa

08.08.2012
International partnership makes progress to develop product for African farmers

An international research collaboration recently demonstrated progress in protecting cassava against cassava brown streak disease (CBSD), a serious virus disease, in a confined field trial in Uganda using an RNA interference technology.

The field trial was planted in November 2010 following approval by the National Biosafety Committee of Uganda. The plants were harvested in November 2011 and results were published in the August 1, 2012 issue of the journal Molecular Plant Pathology . These results point researchers in the right direction as they develop virus-resistant cassava varieties preferred by farmers in Eastern Africa.

In Sub-Saharan Africa, more than 250 million people derive at least 25 percent of their daily calorie intake from the starchy cassava tuberous roots. In the East African countries of Uganda, Kenya, Tanzania, Mozambique, Rwanda, Burundi and Malawi, 63 percent of households also sell cassava products to earn income for their families. It is estimated that in the next 15 years, cassava will constitute the second most important source of income for more than 125 million people in East Africa.

Cassava brown streak disease is a major problem because it destroys the edible tuberous roots, but visual symptoms on leaves and stems are sometimes difficult to detect. This means unexpected losses for farmers at harvest, with potential devastating impact on families that depend on cassava for food security. Since farmers preserve cassava cuttings in the fields for the next crop, the disease is passed on to the next growing season. Around the Lake Victoria region in Uganda, where an epidemic of the disease is rapidly spreading, many farmers have been forced to abandon the cultivation of cassava. The urgency posed by this disease demands that appropriate tools be employed and interventions applied to solve the problem.

Researchers at the Donald Danforth Plant Science Center and two partner institutions in Africa, the National Crops Resources Research Institute in Uganda (NaCRRI) and the Kenya Agricultural Research Institute (KARI), are working to solve the problem for African farmers through a collaborative project called Virus Resistant Cassava for Africa (VIRCA). The VIRCA project has been developing cassava with enhanced resistance to cassava brown streak disease (CBSD) and cassava mosaic disease (CMD).

“The collaboration is showing progress toward helping smallholder farmers combat these devastating diseases,” said Dr. Anton Bua, the Ugandan Cassava Research Team Leader in charge of field trials and communication for the project in East Africa.

“In Uganda, we eat cassava two or three times per day. Restoring and improving cassava productivity will be critical to the continued economic progress of the country and the region,” said Dr. Titus Alicai, project lead, National Crop Resources Research Institute (NaCRRI).
Experts with the UN Food and Agriculture Organization (FAO) have expressed concern that CBSD is on the verge of becoming an epidemic in parts of Africa. A press release issued by the FAO last November called for an urgent increase in funding, research, training, surveillance and other measures to help African farmers and breeders. The concern is strong because cassava contributes to household incomes and food security more than any other single crop in some countries.

VIRCA is supported by the Bill & Melinda Gates Foundation, the Howard Buffett Foundation, the Monsanto Fund and USAID from the American People.

About The Donald Danforth Plant Science Center
Founded in 1998, the Donald Danforth Plant Science Center is a not-for-profit research institute with a mission to improve the human condition through plant science. Research at the Danforth Center will feed the hungry and improve human health, preserve and renew the environment, and enhance the St. Louis region and Missouri as a world center for plant science. The Center’s work is funded through competitive grants and contract revenue from many sources, including the National Institutes of Health, U.S. Department of Energy, National Science Foundation, U.S. Department of Agriculture, U.S. Agency for International Development, the Bill & Melinda Gates Foundation and Howard G. Buffett Foundation.

The Donald Danforth Plant Science Center invites you to visit its website, www.danforthcenter.org, featuring interactive information on the Center scientists, news, education outreach and “Roots & Shoots” blog help keep visitors up to date with Center’s current operations and areas of research.
For additional information, contact:
Karla Roeber, (314) 587-1231
kroeber@danforthcenter.org
Melanie Bernds, (314) 587-1647
mbernds@danforthcenter.org

Melanie Bernds | EurekAlert!
Further information:
http://www.danforthcenter.org

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>