Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers to activate anti-cancer gene

31.08.2010
Researchers at the Faculty of Health Sciences have succeeded in decoding the genetic key that gives particular intestinal cells their identity. With this knowledge of the complex network of genes the researchers now hope to stop colon cancer by activating special anti-cancer genes.

Colon sloughs lining

The intestines have to work properly if we are to benefit from the food we eat. Digestive juices must be secreted, the food broken down into smaller components and then transported through the gut wall and onwards to muscles and organs.

The lining of the gut is coated in epithelial cells, a specialised layer that produces mucous and hormones while keeping dangerous bacteria and toxins at bay. Close contact with pathogenic microbes and toxins means that the epithelial cells may mutate to form cancer. The small intestine therefore secretes the entire epithelial layer in the course of two to five days, while the large intestine takes three weeks to perform the same process.

Gene provides cell ID

A triggered CDX2 gene tells a cell that it is located in the epithelial tissue of the intestine and thus enables the cell to do its job correctly. Associate Professor Jesper Troelsen and colleagues from the University of Copenhagen made this discovery several years ago: CDX2 may thus be regarded as an identity gene.

Cancer cells deactivate important gene

Using advanced equipment for DNA sequestration at the Department of Cellular and Molecular Medicine the research group has now revealed that CDX2 controls more than 600 other genes governing the way the cells of the intestinal epithelial tissue work, ensuring that the intestine functions properly. The discovery has now been published in the Journal of Biological Chemistry.

- "Among the 600 genes we have found five that you can call anti-cancer genes", Associate Professor Troelsen says. "We have also studied early stages of colon cancer. We observed that before the colonic cancer cells began to invade the tissue outside the colon, they deactivated the CDX2 gene, removing their "ID".

- "We are now applying for funds to study the properties of CDX2 that enable it to suppress colon cancer and to find a way of reactivating the CDX2 gene to allow us to halt the progression of colon cancer".

Contact:
DMSc Jesper Troelsen, Tel: +45 35 32 77 96, Mobile: +45 22 14 21 52,
Email: troelsen@sund.ku.dk

DMSc Jesper Troelsen | EurekAlert!
Further information:
http://www.ku.dk

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>