Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research suggests molecular 'switch' may play role in tumor suppression

14.01.2013
Newly published research by Indiana University structural biologist Joel Ybe and colleagues identifies a "topology switch" in the protein clathrin, the function of which may shed light on molecular processes involved in tumor suppression.

The paper, available in and featured on the front cover of the Jan. 16, 2013, issue of FEBS Letters, a journal of the Federation of European Biochemical Societies, could broaden scientists' understanding of the importance of clathrin and potentially lead to new strategies for controlling cancer.

"This is a totally unexpected but wonderful finding," Ybe said. "It has exciting implications for understanding the role that clathrin may play in the growth or suppression of tumors."

Ybe is a senior research scientist in the Department of Molecular and Cellular Biochemistry in the IU College of Arts and Sciences. Co-authors of the paper are postdoctoral researchers Sarah Fontaine and Xiaoyan Lin; IU chemist Todd Stone; Sanjay Mishra, formerly at IU and now at Vanderbilt University; and Jay Nix of Lawrence Berkeley National Laboratory.

Typically found in a three-legged form called a trimer, clathrin is best understood for its role in endocytosis, the process by which cells absorb proteins and other molecules. But recent research has suggested that clathrin in a one-legged form, or monomer, may have a role in suppressing tumors. Ybe and his team show how a "switch" in clathrin can be flipped to produce non-trimeric clathrin molecules.

"Clathrin is known to function as a trimer in receptor-mediated endocytosis, but the existence of the monomeric form and its role in tumor suppression is less well-accepted," said Alexandra Ainsztein, who oversees membrane trafficking grants at the National Institute of General Medical Sciences of the National Institutes of Health. "By providing evidence for a model in which a molecular shift de-trimerizes clathrin and changes its cellular distribution, this work will spur further research into unanticipated roles for this important molecule in healthy and diseased cells."

In endocytosis, trimeric clathrin molecules bind together to form molecular packages that allow other substances to enter cells. Several years ago, researchers in Japan published evidence that clathrin can also serve as an activator of the protein p53, a known tumor suppressor.

For the activation to take place, clathrin and p53 must both be present in the cell's nucleus. The catch is that clathrin molecules cannot penetrate the nucleus in their usual, three-legged form. To enter, the three-legged clathrin molecule must be altered or "de-trimerized."

Using X-ray crystallography, Ybe and his team discovered a "topology switch" in the clathrin molecule. They showed they could break the switch by mutating one key amino acid that is part of the switch. The result: Clathrin was "detrimerized"; three-legged molecules were broken into one-legged ones.

Experimenting with both cancer and non-cancer cells, the researchers found the three-legged clathrin only in the cytoplasm of the cells, not the nucleus. But with the "switch" broken, clathrin formed monomers and was also present in the nucleus, where it could potentially activate tumor suppression.

Ybe said the results point to the need for additional research to better understand the structure and function of clathrin and the role it plays in cellular processes, including those involved in cancer. With the clathrin "switch" identified, researchers can attempt to better understand how it can be activated, with the goal of developing new therapies for suppressing the growth of tumors. Ybe has a patent pending on the idea to use the mutated form of clathrin to stimulate the natural anti-cancer activities of human cells.

The finding developed from Ybe's research on the role of clathrin in Huntington's disease, a genetic disorder that causes neurological degeneration and is estimated to affect about 15,000 people in the U.S. The National Institutes of Health awarded the project a $1.2 million, four-year grant in 2009. The NIH grant number is R01GM064387.

The article is available online. To speak with Ybe, please contact Steve Hinnefeld, IU Communications, 812-856-3488 or slhinnef@indiana.edu

Steve Hinnefeld | EurekAlert!
Further information:
http://www.iu.edu

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>