Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Shows Iron's Importance in Infection, Suggests New Therapies

05.12.2012
A Kansas State University research team has resolved a 40-year-old debate on the role of iron acquisition in bacterial invasion of animal tissues.

The collaborative research -- led by Phillip Klebba, professor and head of the department of biochemistry -- clarifies how microorganisms colonize animal hosts and how scientists may block them from doing so. The findings suggest new approaches against bacterial disease and new strategies for antibiotic development.

The study -- in collaboration with Tyrrell Conway, director of the Microarray and Bioinformatics Core Facilities at the University of Oklahoma, and Salete M. Newton, Kansas State University research professor of biochemistry -- recently appeared in PLOS ONE. It shows how iron acquisition affects the ability of bacteria to colonize animals, which is the first stage of microbial disease.

"This paper establishes that iron uptake in the host is a crucial parameter in bacterial infection of animals," said Klebba, the senior author on the publication. "The paper explains why discrepancies exist about the role of iron, and it resolves them."

Iron plays a key role in metabolism, leading bacteria and animals to battle each other to obtain it. Klebba's team found that E. coli must acquire iron from the host to establish a foothold and colonize the gut -- a concept that was often debated by scientists.

"For years it was theorized that iron is a focal point of bacterial pathogenesis and infectious disease because animals constantly defend the iron in their bodies," Klebba said. "Animal proteins bind iron and prevent microorganisms from obtaining it. This is called nutritional immunity, and it's a strategy of the host defense system to minimize bacterial growth. But successful pathogens overcome nutritional immunity and get the iron."

Little was known about what forms of iron enteric bacteria -- which are bacteria of the intestines -- use when growing in the host, but this study shows that the native Gram-negative bacterial iron uptake systems are highly effective. Scientists questioned whether prevention of iron uptake could block bacterial pathogenesis. This article leaves no doubt about the importance of iron when E. coli colonizes animals because bacteria that were systematically deprived of iron became 10,000-fold less able to grow in host tissues, Klebba said.

"This is the first time our experiments unambiguously verified the indispensability of iron in infection, because here we created the correct combination of mutations to study the problem," Klebba said.

Enteric bacteria have so many iron transport systems that it's difficult to eliminate them all. For example, E. coli has at least eight iron acquisition systems.

"These transporters are redundant because iron is essential," Klebba said. "Bacteria are resilient. If one system is blocked, then another one takes over."

These findings suggest strategies to block microorganisms from creating diseases in animals and humans, including the potential for antibiotic development and for therapeutic antibodies.

"It gives us insight," Klebba said. "Now we know that iron deprivation protects against disease, but we must be comprehensive and inhibit multiple systems to completely shut down the microorganisms' ability to obtain the metal."

The researchers are using their findings to isolate antibodies that block bacterial iron uptake. This may help animals and humans defend themselves against microbial diseases.

"We would like to apply this research and protect people from bacterial infection," Klebba said. "That's one of the focal points of our laboratory."

Klebba's research was supported by a $1.25 million grant from the National Institutes of Health.

The study was led by Hualiang Pi, Klebba's student at his former institution, the University of Oklahoma. Another Kansas State University collaborator on the project was Lorne Jordan, doctoral student in biochemistry, Toledo, Ohio.

The PLOS ONE article, by Hualiang Pi et al., -- titled "Role of Catecholate Siderophpores in Gram-negative Bacterial Colonization of the Mouse Gut" -- is available at http://dx.plos.org/10.1371/journal.pone.0050020.

Phillip Klebba, 785-532-6121, peklebba@k-state.edu

Phillip Klebba | Newswise
Further information:
http://www.k-state.edu

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>