Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Shows Iron's Importance in Infection, Suggests New Therapies

05.12.2012
A Kansas State University research team has resolved a 40-year-old debate on the role of iron acquisition in bacterial invasion of animal tissues.

The collaborative research -- led by Phillip Klebba, professor and head of the department of biochemistry -- clarifies how microorganisms colonize animal hosts and how scientists may block them from doing so. The findings suggest new approaches against bacterial disease and new strategies for antibiotic development.

The study -- in collaboration with Tyrrell Conway, director of the Microarray and Bioinformatics Core Facilities at the University of Oklahoma, and Salete M. Newton, Kansas State University research professor of biochemistry -- recently appeared in PLOS ONE. It shows how iron acquisition affects the ability of bacteria to colonize animals, which is the first stage of microbial disease.

"This paper establishes that iron uptake in the host is a crucial parameter in bacterial infection of animals," said Klebba, the senior author on the publication. "The paper explains why discrepancies exist about the role of iron, and it resolves them."

Iron plays a key role in metabolism, leading bacteria and animals to battle each other to obtain it. Klebba's team found that E. coli must acquire iron from the host to establish a foothold and colonize the gut -- a concept that was often debated by scientists.

"For years it was theorized that iron is a focal point of bacterial pathogenesis and infectious disease because animals constantly defend the iron in their bodies," Klebba said. "Animal proteins bind iron and prevent microorganisms from obtaining it. This is called nutritional immunity, and it's a strategy of the host defense system to minimize bacterial growth. But successful pathogens overcome nutritional immunity and get the iron."

Little was known about what forms of iron enteric bacteria -- which are bacteria of the intestines -- use when growing in the host, but this study shows that the native Gram-negative bacterial iron uptake systems are highly effective. Scientists questioned whether prevention of iron uptake could block bacterial pathogenesis. This article leaves no doubt about the importance of iron when E. coli colonizes animals because bacteria that were systematically deprived of iron became 10,000-fold less able to grow in host tissues, Klebba said.

"This is the first time our experiments unambiguously verified the indispensability of iron in infection, because here we created the correct combination of mutations to study the problem," Klebba said.

Enteric bacteria have so many iron transport systems that it's difficult to eliminate them all. For example, E. coli has at least eight iron acquisition systems.

"These transporters are redundant because iron is essential," Klebba said. "Bacteria are resilient. If one system is blocked, then another one takes over."

These findings suggest strategies to block microorganisms from creating diseases in animals and humans, including the potential for antibiotic development and for therapeutic antibodies.

"It gives us insight," Klebba said. "Now we know that iron deprivation protects against disease, but we must be comprehensive and inhibit multiple systems to completely shut down the microorganisms' ability to obtain the metal."

The researchers are using their findings to isolate antibodies that block bacterial iron uptake. This may help animals and humans defend themselves against microbial diseases.

"We would like to apply this research and protect people from bacterial infection," Klebba said. "That's one of the focal points of our laboratory."

Klebba's research was supported by a $1.25 million grant from the National Institutes of Health.

The study was led by Hualiang Pi, Klebba's student at his former institution, the University of Oklahoma. Another Kansas State University collaborator on the project was Lorne Jordan, doctoral student in biochemistry, Toledo, Ohio.

The PLOS ONE article, by Hualiang Pi et al., -- titled "Role of Catecholate Siderophpores in Gram-negative Bacterial Colonization of the Mouse Gut" -- is available at http://dx.plos.org/10.1371/journal.pone.0050020.

Phillip Klebba, 785-532-6121, peklebba@k-state.edu

Phillip Klebba | Newswise
Further information:
http://www.k-state.edu

More articles from Life Sciences:

nachricht More than just a mechanical barrier – epithelial cells actively combat the flu virus
04.05.2016 | Helmholtz-Zentrum für Infektionsforschung

nachricht Discovery of a fundamental limit to the evolution of the genetic code
03.05.2016 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nuclear Pores Captured on Film

Using an ultra fast-scanning atomic force microscope, a team of researchers from the University of Basel has filmed “living” nuclear pore complexes at work for the first time. Nuclear pores are molecular machines that control the traffic entering or exiting the cell nucleus. In their article published in Nature Nanotechnology, the researchers explain how the passage of unwanted molecules is prevented by rapidly moving molecular “tentacles” inside the pore.

Using high-speed AFM, Roderick Lim, Argovia Professor at the Biozentrum and the Swiss Nanoscience Institute of the University of Basel, has not only directly...

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

A new vortex identification method for 3-D complex flow

04.05.2016 | Materials Sciences

Motorcycle right behind the racing cyclist can improve time in Giro prologue

04.05.2016 | Physics and Astronomy

Scientists challenge conventional wisdom to improve predictions of bootstrap current

04.05.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>