Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Research Sheds Light on M.O. of Unusual RNA Molecules

08.07.2013
The genes that code for proteins—more than 20,000 in total—make up only about 1 percent of the complete human genome.

That entire thing—not just the genes, but also genetic junk and all the rest—is coiled and folded up in any number of ways within the nucleus of each of our cells. Think, then, of the challenge that a protein or other molecule, like RNA, faces when searching through that material to locate a target gene.


The Xist lncRNA (red) recruits proteins responsible for modifying chromatin architecture (green) across the X-chromosome. Xist and its associated proteins coat the entire X-chromosome, forming a distinctive compartment in the nucleus (blue).Credit: Amy Pandya-Jones and Kathrin Plath - See more at: http://www.caltech.edu/content/caltech-research-sheds-light-mo-unusual-rna-molecules#sthash.JMFqZ8Cw.dpuf

Now a team of researchers led by newly arrived biologist Mitchell Guttman of the California Institute of Technology (Caltech) and Kathrin Plath of UCLA, has figured out how some RNA molecules take advantage of their position within the three-dimensional mishmash of genomic material to home in on targets. The research appears in the current issue of Science Express.

The findings suggests a unique role for a class of RNAs, called lncRNAs, which Guttman and his colleagues at the Broad Institute of MIT and Harvard first characterized in 2009. Until then, these lncRNAs—short for long, noncoding RNAs and pronounced "link RNAs"—had been largely overlooked because they lie in between the genes that code for proteins. Guttman and others have since shown that lncRNAs scaffold, or bring together and organize, key proteins involved in the packaging of genetic information to regulate gene expression—controlling cell fate in some stem cells, for example.

In the new work, the researchers found that lncRNAs can easily locate and bind to nearby genes. Then, with the help of proteins that reorganize genetic material, the molecules can pull in additional related genes and move to new sites, building up a "compartment" where many genes can be regulated all at once.

"You can now think about these lncRNAs as a way to bring together genes that are needed for common function into a single physical region and then regulate them as a set, rather than individually," Guttman says. "They are not just scaffolds of proteins but actual organizers of genes."

The new work focused on Xist, a lncRNA molecule that has long been known to be involved in turning off one of the two X chromosomes in female mammals (something that must happen in order for the genome to function properly). Quite a bit has been uncovered about how Xist achieves this silencing act. We know, for example, that it binds to the X chromosome; that it recruits a chromatin regulator to help it organize and modify the structure of the chromatin; and that certain distinct regions of the RNA are necessary to do all of this work. Despite this knowledge, it had been unknown at the molecular level how Xist actually finds its targets and spreads across the X chromosome.

To gain insight into that process, Guttman and his colleagues at the Broad Institute developed a method called RNA Antisense Purification (RAP) that, by sequencing DNA at high resolution, gave them a way to map out exactly where different lncRNAs go. Then, working with Plath's group at UCLA, they used their method to watch in high resolution as Xist was activated in undifferentiated mouse stem cells, and the process of X-chromosome silencing proceeded.

"That's where this got really surprising," Guttman says. "It wasn't that somehow this RNA just went everywhere, searching for its target. There was some method to its madness. It was clear that this RNA actually used its positional information to find things that were very far away from it in genome space, but all of those genes that it went to were really close to it in three-dimensional space."

Before Xist is activated, X-chromosome genes are all spread out. But, the researchers found, once Xist is turned on, it quickly pulls in genes, forming a cloud. "And it's not just that the expression levels of Xist get higher and higher," Guttman says. "It's that Xist brings in all of these related genes into a physical nuclear structure. All of these genes then occupy a single territory."

The researchers found that a specific region of Xist, known as the A-repeat domain, that is known to be vital for the lncRNA's ability to silence X-chromosome genes is also needed to pull in all the genes that it needs to silence. When the researchers deleted the domain, the X chromosome did not become inactivated, because the silencing compartment did not form.

One of the most exciting aspects of the new research, Guttman says, is that it has implications beyond just explaining how Xist works. "In our paper, we talk a lot about Xist, but these results are likely to be general to other lncRNAs," he says. He adds that the work provides one of the first direct pieces of evidence to explain what makes lncRNAs special. "LncRNAs, unlike proteins, really can use their genomic information—their context, their location—to act, to bring together targets," he says. "That makes them quite unique."

The new paper is titled "The Xist lncRNA exploits three-dimensional genome architecture to spread across the X-chromosome." Along with Guttman and Plath, additional coauthors are Jesse M. Engreitz, Patrick McDonel, Alexander Shishkin, Klara Sirokman, Christine Surka, Sabah Kadri, Jeffrey Xing, Along Goren, and Eric Lander of the Broad Institute of Harvard and MIT; as well as Amy Pandya-Jones of UCLA. The work was funded by an NIH Director's Early Independence Award, the National Human Genome Research Institute Centers of Excellence in Genomic Sciences, the California Institute for Regenerative Medicine, and funds from the Broad Institute and from UCLA's Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research.

Written by Kimm Fesenmaier

Contact:
Deborah Williams-Hedges
(626) 395-3227
mr@caltech.edu
- See more at: http://www.caltech.edu/content/caltech-research-sheds-light-mo-unusual-rna-molecules#sthash.JMFqZ8Cw.dpuf

Deborah Williams-Hedges | EurekAlert!
Further information:
http://www.caltech.edu

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>