Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Research Sheds Light on M.O. of Unusual RNA Molecules

08.07.2013
The genes that code for proteins—more than 20,000 in total—make up only about 1 percent of the complete human genome.

That entire thing—not just the genes, but also genetic junk and all the rest—is coiled and folded up in any number of ways within the nucleus of each of our cells. Think, then, of the challenge that a protein or other molecule, like RNA, faces when searching through that material to locate a target gene.


The Xist lncRNA (red) recruits proteins responsible for modifying chromatin architecture (green) across the X-chromosome. Xist and its associated proteins coat the entire X-chromosome, forming a distinctive compartment in the nucleus (blue).Credit: Amy Pandya-Jones and Kathrin Plath - See more at: http://www.caltech.edu/content/caltech-research-sheds-light-mo-unusual-rna-molecules#sthash.JMFqZ8Cw.dpuf

Now a team of researchers led by newly arrived biologist Mitchell Guttman of the California Institute of Technology (Caltech) and Kathrin Plath of UCLA, has figured out how some RNA molecules take advantage of their position within the three-dimensional mishmash of genomic material to home in on targets. The research appears in the current issue of Science Express.

The findings suggests a unique role for a class of RNAs, called lncRNAs, which Guttman and his colleagues at the Broad Institute of MIT and Harvard first characterized in 2009. Until then, these lncRNAs—short for long, noncoding RNAs and pronounced "link RNAs"—had been largely overlooked because they lie in between the genes that code for proteins. Guttman and others have since shown that lncRNAs scaffold, or bring together and organize, key proteins involved in the packaging of genetic information to regulate gene expression—controlling cell fate in some stem cells, for example.

In the new work, the researchers found that lncRNAs can easily locate and bind to nearby genes. Then, with the help of proteins that reorganize genetic material, the molecules can pull in additional related genes and move to new sites, building up a "compartment" where many genes can be regulated all at once.

"You can now think about these lncRNAs as a way to bring together genes that are needed for common function into a single physical region and then regulate them as a set, rather than individually," Guttman says. "They are not just scaffolds of proteins but actual organizers of genes."

The new work focused on Xist, a lncRNA molecule that has long been known to be involved in turning off one of the two X chromosomes in female mammals (something that must happen in order for the genome to function properly). Quite a bit has been uncovered about how Xist achieves this silencing act. We know, for example, that it binds to the X chromosome; that it recruits a chromatin regulator to help it organize and modify the structure of the chromatin; and that certain distinct regions of the RNA are necessary to do all of this work. Despite this knowledge, it had been unknown at the molecular level how Xist actually finds its targets and spreads across the X chromosome.

To gain insight into that process, Guttman and his colleagues at the Broad Institute developed a method called RNA Antisense Purification (RAP) that, by sequencing DNA at high resolution, gave them a way to map out exactly where different lncRNAs go. Then, working with Plath's group at UCLA, they used their method to watch in high resolution as Xist was activated in undifferentiated mouse stem cells, and the process of X-chromosome silencing proceeded.

"That's where this got really surprising," Guttman says. "It wasn't that somehow this RNA just went everywhere, searching for its target. There was some method to its madness. It was clear that this RNA actually used its positional information to find things that were very far away from it in genome space, but all of those genes that it went to were really close to it in three-dimensional space."

Before Xist is activated, X-chromosome genes are all spread out. But, the researchers found, once Xist is turned on, it quickly pulls in genes, forming a cloud. "And it's not just that the expression levels of Xist get higher and higher," Guttman says. "It's that Xist brings in all of these related genes into a physical nuclear structure. All of these genes then occupy a single territory."

The researchers found that a specific region of Xist, known as the A-repeat domain, that is known to be vital for the lncRNA's ability to silence X-chromosome genes is also needed to pull in all the genes that it needs to silence. When the researchers deleted the domain, the X chromosome did not become inactivated, because the silencing compartment did not form.

One of the most exciting aspects of the new research, Guttman says, is that it has implications beyond just explaining how Xist works. "In our paper, we talk a lot about Xist, but these results are likely to be general to other lncRNAs," he says. He adds that the work provides one of the first direct pieces of evidence to explain what makes lncRNAs special. "LncRNAs, unlike proteins, really can use their genomic information—their context, their location—to act, to bring together targets," he says. "That makes them quite unique."

The new paper is titled "The Xist lncRNA exploits three-dimensional genome architecture to spread across the X-chromosome." Along with Guttman and Plath, additional coauthors are Jesse M. Engreitz, Patrick McDonel, Alexander Shishkin, Klara Sirokman, Christine Surka, Sabah Kadri, Jeffrey Xing, Along Goren, and Eric Lander of the Broad Institute of Harvard and MIT; as well as Amy Pandya-Jones of UCLA. The work was funded by an NIH Director's Early Independence Award, the National Human Genome Research Institute Centers of Excellence in Genomic Sciences, the California Institute for Regenerative Medicine, and funds from the Broad Institute and from UCLA's Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research.

Written by Kimm Fesenmaier

Contact:
Deborah Williams-Hedges
(626) 395-3227
mr@caltech.edu
- See more at: http://www.caltech.edu/content/caltech-research-sheds-light-mo-unusual-rna-molecules#sthash.JMFqZ8Cw.dpuf

Deborah Williams-Hedges | EurekAlert!
Further information:
http://www.caltech.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>