Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research reveals novel transport mechanism for large ribonucleoproteins

11.05.2012
Ribonucleoprotein granules exit the nucleus via a budding mechanism akin to herpes-type viruses

The movement of genetic materials, such as RNA and ribosomes, from the nucleus to the cytoplasm is a critical component in a cell's ability to make the proteins necessary for essential biological functions. Until now, it was believed the nuclear pore complex was the sole pathway between the cell nucleus and cytoplasm for these materials.

New evidence published in Cell by Vivian Budnik, PhD, Melissa J. Moore, PhD, and colleagues at the University of Massachusetts Medical School, reveals a novel budding mechanism, similar to the process used by some viruses, capable of exporting large ribonucleoprotein particles from the nucleus to the cytoplasm.

"The findings in this paper fundamentally change our understanding of mRNA export from the nucleus," said Moore, the Eleanor Eustis Farrington Chair in Cancer Research, Howard Hughes Medical Institute Investigator and professor of biochemistry & molecular pharmacology. "In addition to the canonical pathway of mRNA export going through the nuclear pore complex, we now know that large RNA transport granules can be assembled in the cell nucleus and exported via a budding mechanism previously thought to only be used by the herpes virus."

This study has helped to unravel how RNAs support the development of the post-synaptic apparatus, said Budnik, professor of neurobiology. "It provides new evidence about communication between the nucleus and cytoplasm that have implications for diseases that affect the nuclear envelope such as muscular dystrophies and herpes-type infections such as shingles."

Found along the surface of the nuclear envelope, nuclear pores are small openings that allow certain molecules, such as messenger RNA, transfer RNA and ribosomes, to be transported across this physical barrier that separates a cell's nucleus and DNA from its cytoplasm. Once in the cytoplasm, these genetic materials are the factories and blueprints used by the cell to create proteins. In some cells, these RNAs are bound together in large clusters known as transport granules, which are carried to precise locations within a cell to synthetize specific proteins needed at that site.

"When we look at these transport granules to scale, we see that they're too large to pass through the nuclear pore complex," said Moore. "An open question has been, where are these transport granules first assembled? And if it's in the nucleus, how do they make their way to the cytoplasm?"

Working to understand how synapses develop and communicate with neighboring muscle cells, Budnik discovered a new method whereby these large granules, in the form of ribonucleoprotein (RNP) particles, were transported across the nuclear envelope. Specifically, Budnik and colleagues were investigating how the Wnt/wingless (Wg) protein secreted by the motor neuron initiates a reaction involving the DFrizzled2 (DFz2) receptor on the nearby muscle cell. This interaction between Wg and DFz2 eventually leads a portion of the DFz2 into the muscle cell nucleus where it accumulates around large RNP granules containing messenger RNAs. Once they reach their final destination in the muscle cell cytoplasm, these RNAs are responsible for making the synaptic proteins critical to increasing the size of the junction between motor neuron and muscle cell.

It was while investigating this process that Budnik and colleagues witnessed these large granules exiting the muscle cell's nucleus in an unusual manner. "What was so surprising," said Sean D. Speese, PhD, former postdoctoral fellow in the Budnik lab and currently research assistant professor at Oregon Health and Sciences University, "was that the nuclear DFz2-large-RNPs utilized a novel mechanism for exiting the nucleus, which appeared independent of the nuclear pores and resembled the egress of herpes-type viruses from the nuclear envelope."

During infection, herpes virus particles are assembled in the nucleus. But they are much too large to exit through the nuclear pores. Instead, they bud through the double membranes of the nuclear envelope. To exit the nucleus, the protein shell surrounding the virus disrupts the lamina, a fibrous component located beneath the inner nuclear membrane which, among other properties, anchors the nuclear pore complexes to the nuclear membranes. This allows the virus to bud into the space between the inner and the outer nuclear membrane, becoming enveloped by the inner nuclear membrane. Fusion of this coat with the outer nuclear membrane then allows the virus to be released into the cytoplasm.

"Similarly, we found that DFz2C-RNPs used the same mechanism and viral machinery to reach the cytoplasm," said Speese. Once inside the muscle cell nucleus, the DFz2C RNPs recruit proteins, such as kinase C, to disrupt the lamins, which allows them to bud into the inner nuclear membrane. "In both cases, this process was dependent on an A-type lamina protein, which in humans is associated with a number of muscular dystrophies and early aging syndromes when mutated," said Speese.

Collectively, these discoveries have significant ramifications on our understanding of multiple biological questions including RNA transport, synapse development and the herpes virus, which causes chicken pox and shingles and Epstein–Barr virus, which causes mononucleosis.

About the University of Massachusetts Medical School
The University of Massachusetts Medical School, one of the fastest growing academic health centers in the country, has built a reputation as a world-class research institution, consistently producing noteworthy advances in clinical and basic research. The Medical School attracts more than $270 million in research funding annually, 80 percent of which comes from federal funding sources. The mission of the Medical School is to advance the health and well-being of the people of the commonwealth and the world through pioneering education, research, public service and health care delivery with its clinical partner, UMass Memorial Health Care. For more information, visit www.umassmed.edu

Jim Fessenden | EurekAlert!
Further information:
http://www.umassmed.edu

More articles from Life Sciences:

nachricht Enduring cold temperatures alters fat cell epigenetics
19.04.2018 | University of Tokyo

nachricht Full of hot air and proud of it
18.04.2018 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>