Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research provides new leads in the case against drug-resistant biofilms

11.11.2010
Films of bacteria that form around foreign materials in the body can be very difficult to defeat with drugs, but research led by Brown University biologists has identified a couple proteins that play a key role in building these “biofilms.” This pair could prove to be a very important target for developing new antibiotics to fight infections.

When a foreign object such as a catheter enters the body, bacteria may not only invade it but also organize into a slick coating — a biofilm — that is highly resistant to antibiotics. Like sophisticated organized crime rings, biofilms cannot be defeated by a basic approach of conventional means.

Instead doctors and drug developers need sophisticated new intelligence that reveals the key players in the network and how they operate. New research led by biologists at Brown University provides exactly that dossier on some key proteins in the iconic bacterium E. coli.

In a paper published this week in the Journal of Biological Chemistry, the researchers describe a couple of prime suspect genes and the “toxin-antitoxin” protein pair they produce. By analyzing the structure and binding of the proteins in the exquisite detail of atomic-scale X-ray crystallography, the team at Brown and Texas A&M University makes the case that “MqsR” and “MqsA” proteins are important operators worth targeting in hopes of disrupting the formation of biofilms.

“Developing new antibiotics has been very difficult, and they all pretty much target the same few proteins,” said corresponding author Rebecca Page, assistant professor of molecular biology, cell biology and biochemistry at Brown. “Our proteins belong to a family of proteins that have never been investigated for their ability to lead to novel sets of antibiotics. This really provides a new avenue.”

The main role of the combination, or complex, of MqsA and MqsR is that they appear to control the transcription of many genes, including ones that govern the growth of “persister” cells, which provide biofilms with a mesh of antibiotic-resistant constituents. In normal populations, persisters are one in a million. In biofilms, they are one in a hundred.

“The MqsR:MqsA complex not only binds its own genetic promoter, but also binds and regulates the promoters of other genes that are important for biofilm formation,” Page said. “This is the only known toxin-antitoxin system that is capable of doing this.”

An odd bird

The MqsA antitoxin is as unusual as it is influential, Page’s team reports. For one thing, the protein, which resembles a bird with wide flapping wings — Page likens it to a Klingon “Bird of Prey” ship from Star Trek — needs the metal zinc on each wing tip to keep it stable. When it’s bound to its partner toxin and DNA, the antitoxin also keeps a very tight lid on the toxin’s ability to operate on mRNA, squeezing key parts, or active sites, so close together (about 1 billionth of a meter) that the mRNA simply can’t enter.

Because the toxin’s activity is key to the health and welfare of persister and biofilm cells, the properties of the toxin-antitoxin binding that regulate them give rise to some potential drug development strategies, Page said. For most of the time, the toxin is bound by the antitoxin, allowing cells to grow. Under other conditions, the antitoxin is destroyed and the toxin is free to cleave, or disable, mRNA. That shuts off existing persister and biofilm cells from further growth, and instead keeps them in a dormant state well-protected from things like antibiotics. If that cleaving goes on too long, however, the cells will die.

So two approaches for drug development, Page said, might be to find compounds that can either keep the toxin-antitoxin pair associated all the time (so that the toxin is inactive and thus that no cleaving occurs), or keep them separated all the time (so that the toxin is active and cleaving always occurs). The zinc on the antitoxin may also prove to be a target.

The investigation is ongoing, but the word is now out on the street that for MqsA and MqsR, the heat is on.

In addition to Page, the paper’s other authors are graduate student Breann Brown and Associate Professor Wolfgang Peti in Brown’s Department of Molecular Pharmacology, Physiology, and Biotechnology, and Thomas Wood, professor of chemical engineering at Texas A&M.

David Orenstein | EurekAlert!
Further information:
http://www.brown.edu

Further reports about: Brown E. coli MqsA MqsR iconic bacterium E. coli key protein new antibiotics proteins

More articles from Life Sciences:

nachricht Enduring cold temperatures alters fat cell epigenetics
19.04.2018 | University of Tokyo

nachricht Full of hot air and proud of it
18.04.2018 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>