Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research identifies genes vital to preventing childhood leukemia

19.07.2011
Researchers at The University of Western Ontario have identified genes that may be important for preventing childhood leukemia.

Acute lymphoblastic leukemia (ALL) is a cancer of the blood that occurs primarily in young children. It's frequently associated with mutations or chromosomal abnormalities that arise during embryonic or fetal development. Working with mice, researchers led by Rodney DeKoter identified two key genes that appear essential in the prevention of B cell ALL, the most common form of ALL in children. The study is published online in Blood, the Journal of the American Society of Hematology.

http://bloodjournal.hematologylibrary.org/content/early/2011/07/15/blood-2011-02-335539.abstract

In the study, mice were generated with mutations in two genes called PU.1 and Spi-B. Mutation of either PU.1 or Spi-B individually had little effect. Unexpectedly, mutation of both genes resulted in 100% of the mice developing B cell ALL. Eighty percent of ALL cases in children are of the B cell type. The study found PU.1 and Spi-B have unanticipated functional redundancy as "tumor suppressor" genes that prevent leukemia.

"You can think of PU.1 and Spi-B proteins as brakes on a car. If the main brake (PU.1) fails, you still have the emergency brake (Spi-B). However, if both sets of brakes fail, the car speeds out of control," explains DeKoter, an associate professor in the Department of Microbiology & Immunology at Western's Schulich School of Medicine & Dentistry. "And uncontrolled cell division is an important cause of leukemia."

PU.1 is an essential regulator in the development of the immune system, and mutations in this gene have been previously associated with human ALL. DeKoter hopes these studies will ultimately lead to improved, less toxic, therapies for childhood leukemia. Currently, about 80% of ALL patients go into complete remission when treated with aggressive chemotherapy.

This research was funded by the Canadian Institutes of Health Research and the Natural Sciences and Engineering Research Council of Canada.

DeKoter is also affiliated with the Centre for Human Immunology at Western and the Children's Health Research Institute. The lead author on the paper is Kristen Sokalski, a 2011 BMSc graduate with an honours specialization in Biochemistry of Infection & Immunity. Stephen Li and Marek Gruca, both MSc students supervised by DeKoter, and Ian Welch and Heather Cadieux-Pitre of Western's Veterinary Services also worked on the project.

Kathy Wallis | EurekAlert!
Further information:
http://www.uwo.ca

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>