Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research findings may enable earlier diagnosis of uterine cancer

28.01.2009
Cancer of the uterus (womb) is the commonest gynaecological malignancy in the West. Research carried out at the University of Gothenburg has now identified a gene that may simplify future diagnosis.

Cancer is a genetic disease. It occurs when changes take place in the genes that regulate cell division, cell growth, cell death, cell signalling and blood vessel formation - either due to mutations caused by external factors such as smoking or radiation, or due to inherited changes.

This interaction between defective genes and environmental factors means that cancer is an extremely complex disease. Cancer of the uterus, or endometrial carcinoma, is no exception.

Cancer of the uterus is the commonest gynaecological malignancy in the West and accounts for between five and six per cent of all cancers in Swedish women. However, the symptoms are often vague, and we know little about the genetic factors that lead to the appearance and development of this form of cancer. It is therefore vital that these genes are identified, as this could enable doctors to make the diagnosis much more quickly and easily, allowing the development of more effective cancer treatment.

In her study, Sandra Karlsson, a researcher at the Department of Cell and Molecular Biology, has used inbred rats to locate the defective genes that cause uterine cancer. Like monozygotic (identical) twins, these inbred rats are genetically almost identical, which makes it much easier to study the influence of the environment in which they live.

"More than 90 per cent of the female rats in the study spontaneously developed uterine cancer. By using advanced techniques to analyse gene expression in the tumours, we succeeded in identifying a gene signature that could be used as a future diagnostic test for human uterine cancer," says Sandra Karlsson.

The signature is made up of three genes. One of them protects the cell against oxygen free radicals. These free radicals are naturally and continuously produced in the cell, but excess amounts, which can damage the cell and the body's DNA, are associated with over 200 diseases, from arteriosclerosis and dementia to rheumatism, cerebral haemorrhage and cancer. The studies carried out by Sandra Karlsson on human malignant tumours have confirmed that changes in this gene are present in early as well as late stage cancer.

"This shows that the identified gene has an important role in the origin and development of uterine cancer," says Sandra Karlsson.

The thesis Gene Expression Patterns in a Rat Model of Human Endometrial Adenocarcinoma was publicly defended on the December 19th. Supervisor - Professor Karin Klinga Levan.

For further information, please contact:
Sandra Karlsson, Department of Cell and Molecular Biology, University of Gothenburg.
+46 (0)500 44 86 44
+46 (0)731 50 40 64
sandra.karlsson@his.se

Krister Svahn | idw
Further information:
http://www.science.gu.se

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>