Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research award puts focus on future malaria prevention

08.02.2010
The Faculty of Science at the University of Gothenburg has presented the recipient of their third annual Faculty of Science Research Award. The winner of the SEK 250 000 prize is a chemist whose research may eventually help prevent the spread of malaria.

Professor Richard Neutze, 40, earned his doctorate in physics in his home country of New Zealand. Following postdoctoral positions in the UK and Germany, he moved to Sweden in 1997. In 2006, he became a professor at the Department of Chemistry, University of Gothenburg, where he currently directs a successful research team in the Lundberg Laboratory.

The town walls of the cell
The team studies how proteins transport substances across cell membranes. 'All cells are surrounded by membranes, and the membranes contain proteins that are responsible for transports across the membrane and communication with the outside environment. You can liken this to a medieval town with a heavily guarded city wall. For the town to function, it needs to be able to transport water, rubbish, energy and information through the wall,' says Neutze.
Preventing malaria
'To learn how this structure works, we are exploring the chemistry behind how the proteins carry out their different tasks.'
Neutze's research may lead to new ways of preventing the spread of malaria.
'Some of the substances transported through the cells are sugar alcohols. These are important for the ability of the malaria parasite to reproduce inside the human body. A little simplified, our research may one day make it possible to shut down the transport of sugar alcohols in the malaria parasite by taking a pill, and this would greatly slow down the spread of the disease.'
Spray against brain damage
Another application concerns human brain damage. The research may enable emergency medical personnel to one day treat brain damage with a simple spray bottle.

'If we can block a cell's water transport, we can keep it from swelling when damaged. Experiments on mice show that this reduces the risk of brain damage, which otherwise occurs when the brain swells and presses against the skull.'

Internationally renowned
Neutze and his team have had several articles on their findings published in top scientific journals. He also cooperates with researchers from other disciplines, both locally and internationally, and has in only three years established an internationally renowned and very attractive research environment in Gothenburg. One motivation for the award is Neutze's ability to support young researchers in their career development - several young members of Neutze's team have been recruited to some quite prestigious research positions.
Strengthen profile
'I'm of course very happy, especially for my great co-workers since the award will strengthen our profile even further, both inside and outside the University of Gothenburg.' The SEK 250 000 will be spent on further research.
Contact:
Richard Neutze, Professor at the Department of Chemistry, University of Gothenburg
+46 (0)31 786 39 74
+46 (0)73 853 66 22
Richard.Neutze@chem.gu.se

Helena Aaberg | idw
Further information:
http://www.gu.se

Further reports about: CHEMISTRY Science TV Sek brain damage cell membrane malaria parasite

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>