Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


By reprogramming skin cells into brain cells, scientists gain new insights into mental disorders

Using skin cells from patients with mental disorders, scientists are creating brain cells that are now providing extraordinary insights into afflictions like schizophrenia and Parkinson’s disease.

FOR MANY POORLY UNDERSTOOD MENTAL DISORDERS, such as schizophrenia or autism, scientists often wish they could turn back the clock to uncover what has gone wrong in the brains of these patients, and how to right it before much brain damage ensues. But now, thanks to recent developments in the lab, that wish is coming true.

Researchers are using genetic engineering and growth factors to reprogram the skin cells of patients with schizophrenia, autism, and other neurological disorders and grow them into brain cells in the laboratory. There, under their careful watch, investigators can detect inherent defects in how neurons develop or function, or see what environmental toxins or other factors prod them to misbehave in the petri dish. With these “diseases in a dish” they can also test the effectiveness of drugs that can right missteps in development, or counter the harm of environmental insults.

“It’s quite amazing that we can recapitulate a psychiatric disease in a petri dish,” says neuroscientist Fred (Rusty) Gage, a professor of genetics at the Salk Institute for Biological Studies and member of the executive committee of the Kavli Institute for Brain and Mind (KIBM) at the University of California, San Diego. “This allows us to identify subtle changes in the functioning of neuronal circuits that we never had access to before.”

Below is an edited transcript of a conversation with Gage and Anirvan Ghosh, a neurobiologist at the University of California, San Diego and also an executive committee member of KIBM. Both researchers are on the cutting edge of disease-in-a-dish modeling of neurological disorders. Gage and Ghosh discuss how human skin cells induced to return to an immature state (“induced pluripotent stem cells” or IPS cells) are revolutionizing our understanding and treatment of mental and neurodegenerative disorders, such as Parkinson’s disease, as well as leading to new models of drug development for all diseases.

James Cohen | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>