Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reprogramming Brain Cells Important First Step for New Parkinson's Therapy, Penn Study Finds

14.12.2011
Researchers convert astrocytes directly into dopamine-producing nerve cells of the midbrain

In efforts to find new treatments for Parkinson’s Disease (PD), researchers from the Perelman School of Medicine at the University of Pennsylvania have directly reprogrammed astrocytes, the most plentiful cell type in the central nervous system, into dopamine-producing neurons. PD is marked by the degeneration of dopaminergic neurons in the midbrain. Dopamine is a brain chemical important in behavior and cognition, voluntary movement, sleep, mood, attention, and memory and learning.


Dopaminergic neurons generated by directly reprogramming astrocytes. Green stain denotes expression of tyrosine hydroxylase, an enzyme required for dopamine synthesis.
Credit: Russell Addis, PhD, Perelman School of Medicine, University of Pennsylvania

“These cells are potentially useful in cell-replacement therapies for Parkinson’s or in modeling the disease in the lab,” says senior author John Gearhart, PhD, director of the Institute for Regenerative Medicine (IRM) at Penn. The team reports their findings in PLoS One.

“Our study is the first to demonstrate conversion of astrocytes to midbrain dopaminergic neurons, opening the door for novel reprogramming strategies to treat Parkinson’s disease,” says first author Russell C. Addis, PhD, a senior research investigator with IRM.

A Different Approach
Parkinson’s affects different areas of the brain but primarily attacks the dopamine-producing section called the substantial nigra. Cells in this region send dopamine to another region called the striatum, where it is used to regulate movement. The chemical or genetic triggers that kill dopamine neurons over time is at the heart of understanding the progressive loss of these specialized cells.

As many as one million people in the US live with PD, according to the Parkinson’s Disease Foundation. Symptoms include tremors, slowness of movements, limb stiffness, and difficulties with gait and balance.

Limited success in clinical trials over the last 15 years in transplanting fetal stem cells into the brains of Parkinson’s disease patients has spurred researchers to look for new treatments. Using PET scans, investigators have been able to see that transplanted neurons grow and make connections, reducing symptoms for a time. Ethical issues about the source of embryonic stem cells; the interaction of cells with host cells; the efficiency of stems cells to reproduce, and their long-term viability and stability are all still concerns about trials using dopaminergic cell transplants to treat Parkinson’s.

First Steps
In the first step towards a direct cell replacement therapy for Parkinson’s, the team reprogrammed astrocytes to dopaminergic neurons using three transcription factors – ASCL1, LMX1B, and NURR1 – delivered with a lentiviral vector.

The process is efficient, with about 18 percent of cells expressing markers of dopaminergic neurons after two weeks. The next closest conversion efficiency is approximately 9 percent, which was reported in another study.

The dopamine-producing neurons derived from astrocytes showed gene expression patterns and electrophysiolgical properties of midbrain dopaminergic neurons, and released dopamine when their cell membranes were depolarized.

The Penn team is now working to see if the same reprogramming process that converts astrocytes to dopamine-producing neurons in a dish can also work within a living brain – experiments will soon be underway using gene therapy vectors to deliver the reprogramming factors directly to astrocytes in a monkey model of PD.

This project is funded, in part, under a grant with the Pennsylvania Department of Health (PDH). The PDH specifically disclaims responsibility for any analyses, interpretations, or conclusions. Additional support was provided by the Penn Institute for Regenerative Medicine. Co-authors, in addition to Gearhart and Addis, are Rebecca L. Wright and Marc A. Dichter from Penn and Fu-Chun Hsu and Douglas A. Coulter, from the Children’s Hospital of Philadelphia.

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $4 billion enterprise.

Penn's Perelman School of Medicine is currently ranked #2 in U.S. News & World Report's survey of research-oriented medical schools and among the top 10 schools for primary care. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $507.6 million awarded in the 2010 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania -- recognized as one of the nation's top 10 hospitals by U.S. News & World Report; Penn Presbyterian Medical Center; and Pennsylvania Hospital – the nation's first hospital, founded in 1751. Penn Medicine also includes additional patient care facilities and services throughout the Philadelphia region.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2010, Penn Medicine provided $788 million to benefit our community.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>