Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heads or tails? Scientists identify gene that regulates polarity in regenerating flatworms

10.12.2007
When cut, a planarian flatworm can use a population of stem cells called neoblasts to regenerate new heads, new tails or even entire new organisms from a tiny fragment of its body.

Mechanisms have been sought to explain this process of regeneration polarity for over 100 years, but until now, little was known about how planaria can regenerate heads and tails at their proper sites.

Scientists in the lab of Whitehead Member Peter Reddien have discovered that the gene Smed-beta-catenin-1 is required for proper decisions about head-versus-tail polarity in regenerating flatworms. Their results were published in the December 6 issue of Science Express online.

Reddien’s lab studies regeneration in the planarian Schmidtea mediterranea. “Evolution has selected for mechanisms that allow organisms to accomplish incredible feats of regeneration,” and planaria offer a dramatic example, notes Reddien, who is also an assistant professor of biology at Massachusetts Institute of Technology. “By developing this model system to explore the molecular underpinnings of regeneration, we now have a better understanding of the molecular underpinnings of the process.”

The researchers used a technique called RNA interference (RNAi) to screen a group of genes known to be involved in animal development, in order to study the signaling mechanisms that regulate whether the animal would produce a head or tail during regeneration.

“We discovered that inhibiting the gene Smed-beta-catenin-1 caused animals to regenerate a head instead of a tail at the site of the wound,” says Christian Petersen, Whitehead postdoctoral fellow and lead author on the paper. “This resulted in a worm that possessed two oppositely facing heads. Smed-beta-catenin-1 is the first gene found to be required for this regeneration polarity.”

Genes very similar to Smed-beta-catenin-1 are found in animals ranging from jellyfish to humans, and they have been implicated in posterior tissue specification in frogs, sea urchins and many other animals.

Beta-catenin proteins are signaling molecules that reside in the cell’s cytoplasm, and are known to turn on important developmental genes when a cell is exposed to a secreted protein in the Wnt family.

The researchers thus went on to study the expression of Wnt genes during regeneration, and found that different members of the gene family were active at different locations across the planarian’s head-to-tail axis. These results suggest that Smed-beta-catenin-1 may be active in the tail region and inhibited in the head region by the regulated expression of these Wnt genes.

The finding suggests that these varied Wnt genes regulate Smed-beta-catenin-1 activity to provide the positional information by which the organism specifies the location of its head and tail during regeneration. These results could help to explain how other regenerating animals “know” what missing tissues to make.

Additionally, researchers found that Smed-beta-catenin-1 plays a role in ongoing cell replacement in planaria that have not been challenged to regenerate. When the gene was inhibited, these animal’s tails began changing into heads.

The researchers hope that future work on regeneration polarity and Smed-beta-catenin-1 will yield a better understanding of the molecular mechanisms of regeneration.

Cristin Carr | EurekAlert!
Further information:
http://www.wi.mit.edu

Further reports about: Regeneration Smed-beta-catenin-1 Wnt flatworm planaria polarity regenerate regenerating

More articles from Life Sciences:

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

nachricht Scientists generate an atlas of the human genome using stem cells
24.04.2018 | The Hebrew University of Jerusalem

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>