Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heads or tails? Scientists identify gene that regulates polarity in regenerating flatworms

10.12.2007
When cut, a planarian flatworm can use a population of stem cells called neoblasts to regenerate new heads, new tails or even entire new organisms from a tiny fragment of its body.

Mechanisms have been sought to explain this process of regeneration polarity for over 100 years, but until now, little was known about how planaria can regenerate heads and tails at their proper sites.

Scientists in the lab of Whitehead Member Peter Reddien have discovered that the gene Smed-beta-catenin-1 is required for proper decisions about head-versus-tail polarity in regenerating flatworms. Their results were published in the December 6 issue of Science Express online.

Reddien’s lab studies regeneration in the planarian Schmidtea mediterranea. “Evolution has selected for mechanisms that allow organisms to accomplish incredible feats of regeneration,” and planaria offer a dramatic example, notes Reddien, who is also an assistant professor of biology at Massachusetts Institute of Technology. “By developing this model system to explore the molecular underpinnings of regeneration, we now have a better understanding of the molecular underpinnings of the process.”

The researchers used a technique called RNA interference (RNAi) to screen a group of genes known to be involved in animal development, in order to study the signaling mechanisms that regulate whether the animal would produce a head or tail during regeneration.

“We discovered that inhibiting the gene Smed-beta-catenin-1 caused animals to regenerate a head instead of a tail at the site of the wound,” says Christian Petersen, Whitehead postdoctoral fellow and lead author on the paper. “This resulted in a worm that possessed two oppositely facing heads. Smed-beta-catenin-1 is the first gene found to be required for this regeneration polarity.”

Genes very similar to Smed-beta-catenin-1 are found in animals ranging from jellyfish to humans, and they have been implicated in posterior tissue specification in frogs, sea urchins and many other animals.

Beta-catenin proteins are signaling molecules that reside in the cell’s cytoplasm, and are known to turn on important developmental genes when a cell is exposed to a secreted protein in the Wnt family.

The researchers thus went on to study the expression of Wnt genes during regeneration, and found that different members of the gene family were active at different locations across the planarian’s head-to-tail axis. These results suggest that Smed-beta-catenin-1 may be active in the tail region and inhibited in the head region by the regulated expression of these Wnt genes.

The finding suggests that these varied Wnt genes regulate Smed-beta-catenin-1 activity to provide the positional information by which the organism specifies the location of its head and tail during regeneration. These results could help to explain how other regenerating animals “know” what missing tissues to make.

Additionally, researchers found that Smed-beta-catenin-1 plays a role in ongoing cell replacement in planaria that have not been challenged to regenerate. When the gene was inhibited, these animal’s tails began changing into heads.

The researchers hope that future work on regeneration polarity and Smed-beta-catenin-1 will yield a better understanding of the molecular mechanisms of regeneration.

Cristin Carr | EurekAlert!
Further information:
http://www.wi.mit.edu

Further reports about: Regeneration Smed-beta-catenin-1 Wnt flatworm planaria polarity regenerate regenerating

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>