Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heads or tails? Scientists identify gene that regulates polarity in regenerating flatworms

10.12.2007
When cut, a planarian flatworm can use a population of stem cells called neoblasts to regenerate new heads, new tails or even entire new organisms from a tiny fragment of its body.

Mechanisms have been sought to explain this process of regeneration polarity for over 100 years, but until now, little was known about how planaria can regenerate heads and tails at their proper sites.

Scientists in the lab of Whitehead Member Peter Reddien have discovered that the gene Smed-beta-catenin-1 is required for proper decisions about head-versus-tail polarity in regenerating flatworms. Their results were published in the December 6 issue of Science Express online.

Reddien’s lab studies regeneration in the planarian Schmidtea mediterranea. “Evolution has selected for mechanisms that allow organisms to accomplish incredible feats of regeneration,” and planaria offer a dramatic example, notes Reddien, who is also an assistant professor of biology at Massachusetts Institute of Technology. “By developing this model system to explore the molecular underpinnings of regeneration, we now have a better understanding of the molecular underpinnings of the process.”

The researchers used a technique called RNA interference (RNAi) to screen a group of genes known to be involved in animal development, in order to study the signaling mechanisms that regulate whether the animal would produce a head or tail during regeneration.

“We discovered that inhibiting the gene Smed-beta-catenin-1 caused animals to regenerate a head instead of a tail at the site of the wound,” says Christian Petersen, Whitehead postdoctoral fellow and lead author on the paper. “This resulted in a worm that possessed two oppositely facing heads. Smed-beta-catenin-1 is the first gene found to be required for this regeneration polarity.”

Genes very similar to Smed-beta-catenin-1 are found in animals ranging from jellyfish to humans, and they have been implicated in posterior tissue specification in frogs, sea urchins and many other animals.

Beta-catenin proteins are signaling molecules that reside in the cell’s cytoplasm, and are known to turn on important developmental genes when a cell is exposed to a secreted protein in the Wnt family.

The researchers thus went on to study the expression of Wnt genes during regeneration, and found that different members of the gene family were active at different locations across the planarian’s head-to-tail axis. These results suggest that Smed-beta-catenin-1 may be active in the tail region and inhibited in the head region by the regulated expression of these Wnt genes.

The finding suggests that these varied Wnt genes regulate Smed-beta-catenin-1 activity to provide the positional information by which the organism specifies the location of its head and tail during regeneration. These results could help to explain how other regenerating animals “know” what missing tissues to make.

Additionally, researchers found that Smed-beta-catenin-1 plays a role in ongoing cell replacement in planaria that have not been challenged to regenerate. When the gene was inhibited, these animal’s tails began changing into heads.

The researchers hope that future work on regeneration polarity and Smed-beta-catenin-1 will yield a better understanding of the molecular mechanisms of regeneration.

Cristin Carr | EurekAlert!
Further information:
http://www.wi.mit.edu

Further reports about: Regeneration Smed-beta-catenin-1 Wnt flatworm planaria polarity regenerate regenerating

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>