Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heads or tails? Scientists identify gene that regulates polarity in regenerating flatworms

10.12.2007
When cut, a planarian flatworm can use a population of stem cells called neoblasts to regenerate new heads, new tails or even entire new organisms from a tiny fragment of its body.

Mechanisms have been sought to explain this process of regeneration polarity for over 100 years, but until now, little was known about how planaria can regenerate heads and tails at their proper sites.

Scientists in the lab of Whitehead Member Peter Reddien have discovered that the gene Smed-beta-catenin-1 is required for proper decisions about head-versus-tail polarity in regenerating flatworms. Their results were published in the December 6 issue of Science Express online.

Reddien’s lab studies regeneration in the planarian Schmidtea mediterranea. “Evolution has selected for mechanisms that allow organisms to accomplish incredible feats of regeneration,” and planaria offer a dramatic example, notes Reddien, who is also an assistant professor of biology at Massachusetts Institute of Technology. “By developing this model system to explore the molecular underpinnings of regeneration, we now have a better understanding of the molecular underpinnings of the process.”

The researchers used a technique called RNA interference (RNAi) to screen a group of genes known to be involved in animal development, in order to study the signaling mechanisms that regulate whether the animal would produce a head or tail during regeneration.

“We discovered that inhibiting the gene Smed-beta-catenin-1 caused animals to regenerate a head instead of a tail at the site of the wound,” says Christian Petersen, Whitehead postdoctoral fellow and lead author on the paper. “This resulted in a worm that possessed two oppositely facing heads. Smed-beta-catenin-1 is the first gene found to be required for this regeneration polarity.”

Genes very similar to Smed-beta-catenin-1 are found in animals ranging from jellyfish to humans, and they have been implicated in posterior tissue specification in frogs, sea urchins and many other animals.

Beta-catenin proteins are signaling molecules that reside in the cell’s cytoplasm, and are known to turn on important developmental genes when a cell is exposed to a secreted protein in the Wnt family.

The researchers thus went on to study the expression of Wnt genes during regeneration, and found that different members of the gene family were active at different locations across the planarian’s head-to-tail axis. These results suggest that Smed-beta-catenin-1 may be active in the tail region and inhibited in the head region by the regulated expression of these Wnt genes.

The finding suggests that these varied Wnt genes regulate Smed-beta-catenin-1 activity to provide the positional information by which the organism specifies the location of its head and tail during regeneration. These results could help to explain how other regenerating animals “know” what missing tissues to make.

Additionally, researchers found that Smed-beta-catenin-1 plays a role in ongoing cell replacement in planaria that have not been challenged to regenerate. When the gene was inhibited, these animal’s tails began changing into heads.

The researchers hope that future work on regeneration polarity and Smed-beta-catenin-1 will yield a better understanding of the molecular mechanisms of regeneration.

Cristin Carr | EurekAlert!
Further information:
http://www.wi.mit.edu

Further reports about: Regeneration Smed-beta-catenin-1 Wnt flatworm planaria polarity regenerate regenerating

More articles from Life Sciences:

nachricht Research team creates new possibilities for medicine and materials sciences
22.01.2018 | Humboldt-Universität zu Berlin

nachricht Saarland University bioinformaticians compute gene sequences inherited from each parent
22.01.2018 | Universität des Saarlandes

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>