Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Humans not the major target of Shiga toxin

04.12.2007
They're simply caught in crossfire

If you’ve survived Shiga toxin and the after-effects of food poisoning, you may have been the innocent victim of a battle for survival between predator and prey.

Bacteria that carry a virus (a bacteriophage) that packs the Shiga toxin gene (Stx) may depend on it for protection from bacterial predators like the ciliated protozoan Tetrahymena. This is small comfort if you’ve just consumed that Food poisoning victims -- as a result, for example, of consuming Shiga-packing E.coli in a contaminated bag of spinach -- have always had the cold comfort of being told that not all common bacteria make humans extremely sick, only the strains that have integrated the Shiga gene into their DNA. These bacteria can produce large amounts of the Shiga toxin and release it into the surrounding environment.

Leaving sick humans aside for a moment, Gerald Koudelka, Todd Hennessey, and colleagues from the University at Buffalo in Amherst, New York, wondered what evolutionary advantage the bacteria would derive from carrying around such a prickly viral hitchhiker. They hypothesized that the Stx gene might give the bacterial host an equalizer against bacterial predators.

... more about:
»Coli »Koudelka »Shiga »Stx »Tetrahymena »Toxin

“Humans may not be the major target of this toxin,” explains Koudelka. “Instead, they might be simply caught in the cross-fire in this ancient battle between prey and predators.”

To test their hypothesis, the researchers grew Tetrahymena with an E. coli strain (EDL933) that carries the Stx gene. It worked, at least, for the EDL933 that grew successfully in co-cultures with Tetrahymena. In this hostile environment, it was the predator, Tetrahymena, that was killed by the bacteria’s Shiga toxin. An E. coli strain (W3110) lacking Stx did poorly with Tetrahymena as roommates. The Tetrahymena had them for lunch.

The Shiga toxin kills by binding to a receptor on the surface of Tetrahymena. Adding protein subunits that block toxin binding to the protozoan predator prevented killing by Shiga toxin. Humans have the same surface receptor for Shiga toxin as do Tetrahymena, which gives biologists and produce packers a close interest in the deadly duel between Tetrahymena and Shiga-packing E. coli.

The Koudelka and Hennessey labs are continuing to characterize the route of Shiga toxin entry into the cytoplasm of Tetrahymena, its mode of killing, and the ability of Tetrahymena to develop resistance to Shiga toxin. The protozoan might make a model cellular system for Shiga detoxification, which one day might relieve some of the stress around the salad bar, say Koudelka and Hennessey.

John Fleischman | EurekAlert!
Further information:
http://www.ascb.org

Further reports about: Coli Koudelka Shiga Stx Tetrahymena Toxin

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>