Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tethered to chip, energy supply that drives sperm could power 'nanobot'

04.12.2007
Presented at American Society for Cell Biology annual meeting

The biological pathway that powers sperm to swim long distances could be harnessed to nanotech devices, releasing drugs or performing mechanical functions inside the body, according to a presentation at the American Society for Cell Biology’s 47th Annual meeting.

The work by researchers at Cornell’s Baker Institute of Animal Health may be the first demonstration of how multistep biological pathways can be assembled and function on a human-made device.

Mammalian sperm have to delivery energy to the long, thin, whip-like tails that power their swimming. Sperm meet the challenge, in part, by onsite power generation, modifying the enzymes of glycolysis so that they can attach themselves to a solid structure running the major length of the sperm tail. From that secure perch, glycolytic enzymes convert sugar into ATP, supplying energy all along the sperm’s bending and flexing tail.

... more about:
»POWeR »enzyme »pathway »sperm »tail

Chinatsu Mukai, Alex Travis, and others at Cornell’s College of Veterinary Science looked at the early steps in the glycolysis pathway to see if they could move it from the thin “fibrous sheath” that covers the sperm tail to a solid inorganic substitute—a nickel-NTA (nitrilotriacetic acid) chip.

First, the researchers replaced the sperm-specific targeting domain of hexokinase, the first enzyme of glycolysis, with a tag that binds to a special gold surface. Even when tethered, the enzyme remained functional. Next they tagged the second enzyme in the pathway, glucose-6-phosphate isomerase. This too was active when tethered. With both attached to the same support, the enzymes acted in series with the product of the first reaction serving as substrate for the second.

These are only the first steps in reproducing the full glycolytic pathway on an inorganic support, say Mukai and Travis. Mukai and Travis suggest that their work serves as proof of principle that the organization of the glycolytic pathway in sperm might provide a natural engineering solution of how to produce ATP locally on nano devices.

John Fleischman | EurekAlert!
Further information:
http://www.ascb.org

Further reports about: POWeR enzyme pathway sperm tail

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>