Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lymphatic vessel and lymph node function are restored with growth factor treatment

03.12.2007
The frequent spread of certain cancers to lymph nodes often necessitates surgery or radiation therapy that damages the lymphatic system and can cause lymphedema, a condition of localized fluid retention that often increases susceptibility to infections.

The researchers at the University of Helsinki, Finland, and the Ludwig Institute of Cancer Research show that application of vascular endothelial growth factor-C (VEGF-C) to replace excised mouse lymph nodes and lymph vessels ensures formation of mature lymphatic vessels and incorporation of lymph node transplants into existing lymphatic vasculature. An improved outcome of lymph node transplantation is evidenced by improved lymphatic drainage and restoration of normal lymphatic vascular anatomy in VEGF-C-treated mice.

The ability to transfer lymph nodes that reconstitute a functional network of lymphatic vessels in adult tissues is of particular importance in cancer follow-up therapy, as lymph nodes can prevent systemic dissemination of metastases. Accordingly, VEGF-C-treated lymph nodes were more effective in trapping metastatic tumor cells than control transplants.

It has been estimated that approximately 20-30% of patients that have undergone irradiation or surgery of the armpit in response to lymph node metastases develop lymphedema later on. Damage to the large collecting lymphatic vessels, which resemble smaller veins, causes the vast majority of all lymphedemas. It has been estimated that several million patients suffer from such acquired lymphedema worldwide. The treatment of lymphedema is currently based on physiotherapy, compression garments and occasionally surgery, but means to reconstitute the collecting lymphatic vessels and cure the condition are limited.

The researchers applied vascular endothelial growth factor-C (VEGF-C) gene therapy in mice after surgery removal of axillary lymph nodes, a procedure that mimicked removal of axillary lymph nodes in patients in response to metastatic breast cancer. They found that treatment of lymph node-excised mice with adenoviral VEGF-C gene transfer vectors induced robust growth of the lymphatic capillaries, which gradually underwent an intrinsic remodeling, differentiation and maturation program into functional collecting lymphatic vessels, including formation of uniform endothelial cell-cell junctions and intraluminal valves.

As VEGF-C quite potently increases the rate of lymph node metastasis, the researchers sought to develop a mode of therapy that could be safely applied also in patients that had been treated for cancer. They established that the VEGF-C therapy greatly improved the outcome of lymph node transplantation. As a result, they were able to reconstruct the normal gross anatomy of the lymphatic network in the axilla, including both the lymphatic vessels and the nodes, suggesting that VEGF-C therapy combined to autologous lymph node transfer is feasible in the clinical setting.

The advantage of this rationale is increased patient safety in instances of recurrent malignancies, as the transplanted lymph nodes provide an immunological barrier against systemic dissemination of cancer cells, as well as other pathogens.

The findings demonstrate for the first time that growth factor therapy can be used to generate functional and mature collecting lymphatic vessels. This, combined with lymph node transplantation, allows for complete restoration of the lymphatic system in damaged tissues, and provides a working model for future treatment of lymphedema in patients. Effective lymph node transplantation holds tremendous potential for immunotherapy applications in the treatment of diseases such as cancer and chronic infections. Furthermore, the findings encourage the use of growth factor therapy to enhance the vascular integration and viability of transplanted tissues.

The group is currently pursuing this form of therapy in larger animal models in order to eventually treat lymphedema patients. Further the group aims to discover methods that would accelerate lymphatic vessel maturation.

Paivi Lehtinen | alfa
Further information:
http://www.helsinki.fi

Further reports about: Transplantation VEGF-C collecting lymph lymph nodes lymphatic lymphedema node vascular vessel

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>