Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lymphatic vessel and lymph node function are restored with growth factor treatment

03.12.2007
The frequent spread of certain cancers to lymph nodes often necessitates surgery or radiation therapy that damages the lymphatic system and can cause lymphedema, a condition of localized fluid retention that often increases susceptibility to infections.

The researchers at the University of Helsinki, Finland, and the Ludwig Institute of Cancer Research show that application of vascular endothelial growth factor-C (VEGF-C) to replace excised mouse lymph nodes and lymph vessels ensures formation of mature lymphatic vessels and incorporation of lymph node transplants into existing lymphatic vasculature. An improved outcome of lymph node transplantation is evidenced by improved lymphatic drainage and restoration of normal lymphatic vascular anatomy in VEGF-C-treated mice.

The ability to transfer lymph nodes that reconstitute a functional network of lymphatic vessels in adult tissues is of particular importance in cancer follow-up therapy, as lymph nodes can prevent systemic dissemination of metastases. Accordingly, VEGF-C-treated lymph nodes were more effective in trapping metastatic tumor cells than control transplants.

It has been estimated that approximately 20-30% of patients that have undergone irradiation or surgery of the armpit in response to lymph node metastases develop lymphedema later on. Damage to the large collecting lymphatic vessels, which resemble smaller veins, causes the vast majority of all lymphedemas. It has been estimated that several million patients suffer from such acquired lymphedema worldwide. The treatment of lymphedema is currently based on physiotherapy, compression garments and occasionally surgery, but means to reconstitute the collecting lymphatic vessels and cure the condition are limited.

The researchers applied vascular endothelial growth factor-C (VEGF-C) gene therapy in mice after surgery removal of axillary lymph nodes, a procedure that mimicked removal of axillary lymph nodes in patients in response to metastatic breast cancer. They found that treatment of lymph node-excised mice with adenoviral VEGF-C gene transfer vectors induced robust growth of the lymphatic capillaries, which gradually underwent an intrinsic remodeling, differentiation and maturation program into functional collecting lymphatic vessels, including formation of uniform endothelial cell-cell junctions and intraluminal valves.

As VEGF-C quite potently increases the rate of lymph node metastasis, the researchers sought to develop a mode of therapy that could be safely applied also in patients that had been treated for cancer. They established that the VEGF-C therapy greatly improved the outcome of lymph node transplantation. As a result, they were able to reconstruct the normal gross anatomy of the lymphatic network in the axilla, including both the lymphatic vessels and the nodes, suggesting that VEGF-C therapy combined to autologous lymph node transfer is feasible in the clinical setting.

The advantage of this rationale is increased patient safety in instances of recurrent malignancies, as the transplanted lymph nodes provide an immunological barrier against systemic dissemination of cancer cells, as well as other pathogens.

The findings demonstrate for the first time that growth factor therapy can be used to generate functional and mature collecting lymphatic vessels. This, combined with lymph node transplantation, allows for complete restoration of the lymphatic system in damaged tissues, and provides a working model for future treatment of lymphedema in patients. Effective lymph node transplantation holds tremendous potential for immunotherapy applications in the treatment of diseases such as cancer and chronic infections. Furthermore, the findings encourage the use of growth factor therapy to enhance the vascular integration and viability of transplanted tissues.

The group is currently pursuing this form of therapy in larger animal models in order to eventually treat lymphedema patients. Further the group aims to discover methods that would accelerate lymphatic vessel maturation.

Paivi Lehtinen | alfa
Further information:
http://www.helsinki.fi

Further reports about: Transplantation VEGF-C collecting lymph lymph nodes lymphatic lymphedema node vascular vessel

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>