Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Genetic Insights into the Settlement History of the Americas

28.11.2007
Did a relatively small number of people from Siberia who trekked across a Bering Strait land bridge some 12,000 years ago give rise to the indigenous populations of North and South America?

Or, did the ancestors of today’s Native Americans come from other parts of Asia or Polynesia, arriving multiple times at several places on the two continents, by sea as well as by land, in successive migrations that began as early as 30,000 years ago? Such questions have fascinated anthropologists and archaeologists for decades.

An international team of geneticists and anthropologists, from U.S., British, Canadian, Swiss, and Central and South American universities, have produced new genetic evidence that is likely to hearten proponents of the land bridge theory. This study, published PLoS Genetics, is one of the most comprehensive analyses to date among efforts to use genetic data to shed light on the settlement history of the Americas.

The researchers examined genetic variation at 678 key locations or markers in the DNA of present-day members of 29 Native American populations across North, Central and South America. They also analyzed data from two Siberian groups. The analysis shows that genetic diversity, as well as genetic similarity to the Siberian groups, decreases the farther a native population is from the Bering Strait – adding to existing archaeological and genetic evidence that the ancestors of Native North and South Americans came by the northwest route.

... more about:
»Genetic »Migration »evidence »native »variant

The analysis also shows that a unique genetic variant is widespread in Native Americans across the American continents – suggesting that the first humans in the Americas came in a single migration or multiple waves from a single source, not in waves of migrations from different sources. This variant has not been found in genetic studies of people elsewhere in the world except in eastern Siberia.

The researchers say the variant likely occurred shortly prior to migration to the Americas, or immediately afterwards. “We have reasonably clear genetic evidence that the most likely candidate for the source of Native American populations is somewhere in east Asia,” says Noah A. Rosenberg, Ph.D., assistant professor of human genetics and assistant research professor of bioinformatics at the Center for Computational Medicine and Biology at the University of Michigan Medical School and assistant research professor at the University of Michigan Life Sciences Institute.

“If there were a large number of migrations, and most of the source groups didn’t have the variant, then we would not see the widespread presence of the mutation in the Americas,” he says.

The pattern that the research uncovered – that as the founding populations moved south from the Bering Strait, genetic diversity declined – is what one would expect when migration is relatively recent, says Mattias Jakobsson, co-first author of the paper. There has not yet been time for mutations that typically occur over longer periods to diversify the gene pool.

In addition, the study’s findings hint at supporting evidence for scholars who believe early inhabitants followed the coasts to spread south into South America, rather than moving in waves across the interior. “Assuming a migration route along the coast provides a slightly better fit with the pattern we see in genetic diversity,” Rosenberg says.

Funding for the research came from the National Institutes of Health, the Canadian Institutes of Health Research, Fondecyt Proyecto, the Swiss National Foundation and the University of Michigan.

Andrew Hyde | alfa
Further information:
http://genetics.plos.org

Further reports about: Genetic Migration evidence native variant

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>