Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Genetic Insights into the Settlement History of the Americas

28.11.2007
Did a relatively small number of people from Siberia who trekked across a Bering Strait land bridge some 12,000 years ago give rise to the indigenous populations of North and South America?

Or, did the ancestors of today’s Native Americans come from other parts of Asia or Polynesia, arriving multiple times at several places on the two continents, by sea as well as by land, in successive migrations that began as early as 30,000 years ago? Such questions have fascinated anthropologists and archaeologists for decades.

An international team of geneticists and anthropologists, from U.S., British, Canadian, Swiss, and Central and South American universities, have produced new genetic evidence that is likely to hearten proponents of the land bridge theory. This study, published PLoS Genetics, is one of the most comprehensive analyses to date among efforts to use genetic data to shed light on the settlement history of the Americas.

The researchers examined genetic variation at 678 key locations or markers in the DNA of present-day members of 29 Native American populations across North, Central and South America. They also analyzed data from two Siberian groups. The analysis shows that genetic diversity, as well as genetic similarity to the Siberian groups, decreases the farther a native population is from the Bering Strait – adding to existing archaeological and genetic evidence that the ancestors of Native North and South Americans came by the northwest route.

... more about:
»Genetic »Migration »evidence »native »variant

The analysis also shows that a unique genetic variant is widespread in Native Americans across the American continents – suggesting that the first humans in the Americas came in a single migration or multiple waves from a single source, not in waves of migrations from different sources. This variant has not been found in genetic studies of people elsewhere in the world except in eastern Siberia.

The researchers say the variant likely occurred shortly prior to migration to the Americas, or immediately afterwards. “We have reasonably clear genetic evidence that the most likely candidate for the source of Native American populations is somewhere in east Asia,” says Noah A. Rosenberg, Ph.D., assistant professor of human genetics and assistant research professor of bioinformatics at the Center for Computational Medicine and Biology at the University of Michigan Medical School and assistant research professor at the University of Michigan Life Sciences Institute.

“If there were a large number of migrations, and most of the source groups didn’t have the variant, then we would not see the widespread presence of the mutation in the Americas,” he says.

The pattern that the research uncovered – that as the founding populations moved south from the Bering Strait, genetic diversity declined – is what one would expect when migration is relatively recent, says Mattias Jakobsson, co-first author of the paper. There has not yet been time for mutations that typically occur over longer periods to diversify the gene pool.

In addition, the study’s findings hint at supporting evidence for scholars who believe early inhabitants followed the coasts to spread south into South America, rather than moving in waves across the interior. “Assuming a migration route along the coast provides a slightly better fit with the pattern we see in genetic diversity,” Rosenberg says.

Funding for the research came from the National Institutes of Health, the Canadian Institutes of Health Research, Fondecyt Proyecto, the Swiss National Foundation and the University of Michigan.

Andrew Hyde | alfa
Further information:
http://genetics.plos.org

Further reports about: Genetic Migration evidence native variant

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>