Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why you remember names and ski slopes

26.11.2007
Researchers discover personal trainer for your memory

When you meet your boss's husband, Harvey, at the office holiday party, then bump into him an hour later over the onion dip, will you remember his name?

Yes, thanks to a nifty protein in your brain called kalirin-7.

Researchers at Northwestern University's Feinberg School of Medicine have discovered the brain protein kalirin is critical for helping you learn and remember what you learned.

... more about:
»Penzes »remember »spines

Previous studies by other researchers found that kalirin levels are reduced in brains of people with diseases like Alzheimer's and schizophrenia. Thus, the discovery of kalirin's role in learning offers new insight into the pathophysiology of these disorders.

"Identifying the key role of this protein in learning and memory makes it a new target for future drug therapy to treat or delay the progression of these diseases," said Peter Penzes, lead author of the study and assistant professor of physiology at the Feinberg School. Penzes studied the brains of laboratory rats which are similar to human brains.

The study will be published November 21 in the journal Neuron.

Kalirin behaves like a personal trainer for your memory. When you learn something new, kalirin bulks up the synaptic spines in your brain -- which resemble tiny, white mushrooms. The spines grow bigger and stronger the more you repeat the lesson. It works the same whether you're learning a new cell phone number, skiing a new double black diamond slope or testing a pumpkin cheesecake recipe.

Synaptic spines are the sites in the brain where neurons (brain cells) talk to each other. "If these sites are bigger, the communication is better," Penzes said. "A synapse is like a volume dial between two cells. If you turn up the volume, communication is better. Kalirin makes the synaptic spines grow."

Kalirin's role in learning and memory help explain why continued intellectual activity and learning delays cognitive decline as people grow older. "It's important to keep learning so your synapses stay healthy," Penzes said.

Marla Paul | EurekAlert!
Further information:
http://www.northwestern.edu

Further reports about: Penzes remember spines

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>