Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists get first look at how water 'lubricates' proteins

16.11.2007
Scientists are one step closer to understanding how proteins move when they perform functions essential for supporting life.

For the first time, scientists have directly observed how water lubricates the movements of protein molecules to enable different functions to happen.

In a paper published in the online early edition of the Proceedings of the National Academy of Sciences, Ohio State University researchers report using ultra-fast light pulses to reveal how water molecules link up with proteins and enable them to move and function.

The finding could one day help researchers find new treatments for diseases such as Alzheimer's, Parkinson's, cataracts, cystic fibrosis, and diabetes.

... more about:
»Protein »Water »function »water molecules

Proteins are complex molecules that form the main support structure for plant and animal cells, and they also regulate biochemical reactions. The shape and movements of a protein molecule determine its function, and scientists have long known that proteins can't function unless they are immersed in water.

“Protein-water interactions are a central, long-standing, unsolved problem in protein science,” said Dongping Zhong, associate professor of physics at Ohio State and leader of the study. “We believe that we are making a major step to answer these fundamental questions, and the final results will be very important for many biological applications.”

For instance, scientists could better understand how proteins fold and mis-fold -- a key to understanding certain diseases. They could also design more effective drug molecules that link up with proteins in just the right way.

Molecules move fast, shape-shifting in mere fractions of a second, so the movements are hard to see.

This study marks the first time scientists have been able to map the movements of water molecules at different sites on a much larger protein molecule, and see how those movements influence the form and function of the protein.

Zhong and his team took laser “snapshots” of a single myoglobin protein -- the protein that carries oxygen inside muscle tissue -- immersed in water in the laboratory. They were able to measure how fast the water molecules were moving around the protein, and see how those movements related to characteristics of the protein at that moment -- the electrical charge at a particular site, for instance, or changes in the protein's shape.

Proteins can execute a movement in a few billionths of a second. Water normally moves a thousand times faster -- on the scale of a trillionth of a second. In previous work, the Ohio State researchers showed that water molecules slow down substantially as they gets close to a protein.

This new study shows that the water molecules slow even more once they reach the protein. The water forms a very thin layer -- only three molecules thick -- around the protein, and this layer is key to maintaining the protein's structure and flexibility, lubricating its movements.

Their findings challenge the conventional wisdom of theorists who try to envision what is happening on these tiny scales. Because they can't directly see what's happening, scientists use simulations to fill the gap.

The simulation software has improved in recent years, Zhong said. But for two years his team has compared simulations to actual experiments, and found that the two don't match up.

“We are pretty confident at this point that the simulations need to change,” Zhong said. “Our experimental data provide a benchmark for testing and improving them.”

In the future, Zhong's team will study how water affects proteins interacting with each other, and with DNA.

“Our ultimate goal is to understand why water is so unique and important to life,” he said.

Zhong's coauthors on the paper included Luyuan Zhang, Lijuan Wang, Ya-Ting Kao, Weihong Qiu, Yi Yang, and Oghaghare Okobiah, all of Ohio State . This work was supported by the National Science Foundation, the Packard Foundation Fellowship, and the Petroleum Research Fund.

Dongping Zhong | EurekAlert!
Further information:
http://www.osu.edu

Further reports about: Protein Water function water molecules

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Start codons in DNA may be more numerous than previously thought

21.02.2017 | Life Sciences

An alternative to opioids? Compound from marine snail is potent pain reliever

21.02.2017 | Life Sciences

Warming ponds could accelerate climate change

21.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>