Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yellowstone viruses 'jump' between hot pools

14.11.2007
A population study of microbes in Yellowstone National Park hot pools suggests viruses might be buoyed by steam to distant pools.

The result, to be published online next week in the Proceedings of the National Academy of Sciences, could help to answer some fundamental questions about how microbes, and the viruses that infect them, impact their environment.

Researchers at Montana State University and Idaho National Laboratory embarked on one of the first comprehensive, long-term characterizations of hot pool ecosystems in Yellowstone National Park. The results help shed light on how viruses survive in hostile surroundings, migrate from pool to pool, and may help control hot pool environments.

A big question for biologists is how much microbes and their predators contribute to creating the acidic, mineral-heavy environment in geothermal features. In the laboratory, microbes like sulfur-eating Sulfolobus, which is found in hot pools around the world, will lower the acidity of the surrounding water to their comfort level. Viruses that infect hot pool microbes may have a similar effect on their environment by keeping certain populations in check.

... more about:
»Virus »Water »Yellowstone »microbe

To investigate the impact of viruses on their ecosystems, researchers at the Montana State University Thermal Biology Institute, with the help of Idaho National Laboratory, sampled three distinct Yellowstone hot pools over the course of two years. Initially, the team looked for a relationship between pool conditions and microbe population. But while the populations of different viruses fluctuated wildly, pool conditions stayed the same.

Instead, the researchers found something surprising – changes in Sulfolobus virus populations suggested the viruses were migrating from pool to pool. The researchers set out to determine how migration to pools miles away might occur. Since subterranean water temperatures are so high, underground migration seemed unlikely. Following a hunch, the researchers found viruses in the air column above pools, suggesting the viruses might be buoyed from pool to pool in droplets of steam.

Strangely, viruses thrived in pools even if their chosen hosts were relatively rare. Sulfolobus viruses are not hearty. Most survive only a few hours in the acidic water outside a host. If Sulfolobus is common microbe in a hot pool, a virus’ next victim might be too far away to reach. Still, the study suggests the viruses are successful in infecting microbes, even if new hosts are rare and separated by hostile waters. The viruses might also be capable of infecting a wider range of microbes than researchers now know. “It’s really a mystery how these viruses could have evolved if they can’t survive in hot pools by themselves,” says Idaho National Laboratory microbiology Frank Roberto, who sequenced and analyzed the virus DNA. “To reproduce, these viruses need to leave their hosts. Then they’re entering a really hostile environment.”

Learning how viruses interact with their thermoacidophilic hosts may become increasingly important as microbes are adapted for a number of large-scale energy applications, from cleaning coal plant smokestacks to processing cellulose for ethanol.

A greater understanding of the significance of viruses in Yellowstone thermal features is still on the horizon, Roberto says. “We’re in uncharted territory in terms of understanding how these viruses impact the ecosystem of these pools,” he says. When viruses leave their hosts, they sometimes carry bits of host DNA with them. Roberto speculates Yellowstone viruses may transport genetic information from one pool to another, impacting the evolution of microbes across the park.

Rachel Courtland | EurekAlert!
Further information:
http://tbi.montana.edu/
http://www.inl.gov/featurestories/2007-10-23.shtml

Further reports about: Virus Water Yellowstone microbe

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>