Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New insight into the link between genetics and obesity

12.11.2007
Scientists have acquired new insight into how the ‘obesity gene’ triggers weight gain in some individuals. Their findings, reported online today in Science Express, could have implications for the future treatment of obesity as well as adult onset diabetes.

Earlier this year a team of British geneticists discovered that variation in a gene called FTO influence people’s risk of becoming obese. While genetic defects causing human obesity had been previously described, the FTO discovery was of considerable interest because the genetic variant in FTO that predisposes to obesity is very common.

About half the UK population carry a copy of the variant and they are on average 1.6 kilograms heaver than those who don’t have the variant, while 16% of the population carry two copies of the variant and are on average three kilograms heavier. Carriers of the variant also had an increased risk of diabetes. However the function of FTO was completely unknown.

Researchers from the University of Cambridge, Oxford University and Cancer Research UK, London, have found that the FTO gene, codes for an enzyme that can act directly on DNA to modify it – suggesting that it might have a role in controlling the turning on and off of other genes.

... more about:
»FTO »obesity »variant

They also found that FTO is highly expressed in a region of the brain, called the hypothalamus, which has important roles in the control of hunger and satiety and that, in certain parts of the hypothalamus, the levels of FTO are influenced by feeding and fasting.

This work benefited from an unusual and exciting collaboration. Initially, the Cambridge/London and the Oxford teams were working independently on this problem but recently pooled their complementary expertise to ensure that the findings were reliably repeatable using different approaches in different laboratories.

Professor Stephen O’Rahilly, who led the Cambridge part of the collaboration, said: “This is the first glimpse into the possible mechanisms whereby this very common genetic variant might influence a person’s risk of obesity. The finding that FTO is an enzyme with these actions on DNA is very surprising and a lot of work is still needed to work out how its actions influence body weight.

“The finding that FTO may have some involvement in the control of the function of the hypothalamus suggest that, like other obesity genes previously discovered, it may play some role in the influencing how well the brain senses hunger and fullness. As the activity of FTO can be altered by small molecules like metabolites, it is possible, in the future, that FTO could be manipulated therapeutically to help treat obesity.”

Sara Hiom, director of health information at Cancer Research UK, said: "This is an important piece of research. We know that obesity increases people's risk of developing a range of cancers as well as other diseases, and the increasing number of people who are overweight will have significant implications for cancer in the future. Unravelling how this gene works is very exciting and may one day lead to new treatments for obesity. However maintaining a healthy body weight through a balanced diet and regular physical activity is important for general health as well as reducing the risk of many cancers."

Genevieve Maul | EurekAlert!
Further information:
http://www.cam.ac.uk

Further reports about: FTO obesity variant

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>