Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New insight into the link between genetics and obesity

12.11.2007
Scientists have acquired new insight into how the ‘obesity gene’ triggers weight gain in some individuals. Their findings, reported online today in Science Express, could have implications for the future treatment of obesity as well as adult onset diabetes.

Earlier this year a team of British geneticists discovered that variation in a gene called FTO influence people’s risk of becoming obese. While genetic defects causing human obesity had been previously described, the FTO discovery was of considerable interest because the genetic variant in FTO that predisposes to obesity is very common.

About half the UK population carry a copy of the variant and they are on average 1.6 kilograms heaver than those who don’t have the variant, while 16% of the population carry two copies of the variant and are on average three kilograms heavier. Carriers of the variant also had an increased risk of diabetes. However the function of FTO was completely unknown.

Researchers from the University of Cambridge, Oxford University and Cancer Research UK, London, have found that the FTO gene, codes for an enzyme that can act directly on DNA to modify it – suggesting that it might have a role in controlling the turning on and off of other genes.

... more about:
»FTO »obesity »variant

They also found that FTO is highly expressed in a region of the brain, called the hypothalamus, which has important roles in the control of hunger and satiety and that, in certain parts of the hypothalamus, the levels of FTO are influenced by feeding and fasting.

This work benefited from an unusual and exciting collaboration. Initially, the Cambridge/London and the Oxford teams were working independently on this problem but recently pooled their complementary expertise to ensure that the findings were reliably repeatable using different approaches in different laboratories.

Professor Stephen O’Rahilly, who led the Cambridge part of the collaboration, said: “This is the first glimpse into the possible mechanisms whereby this very common genetic variant might influence a person’s risk of obesity. The finding that FTO is an enzyme with these actions on DNA is very surprising and a lot of work is still needed to work out how its actions influence body weight.

“The finding that FTO may have some involvement in the control of the function of the hypothalamus suggest that, like other obesity genes previously discovered, it may play some role in the influencing how well the brain senses hunger and fullness. As the activity of FTO can be altered by small molecules like metabolites, it is possible, in the future, that FTO could be manipulated therapeutically to help treat obesity.”

Sara Hiom, director of health information at Cancer Research UK, said: "This is an important piece of research. We know that obesity increases people's risk of developing a range of cancers as well as other diseases, and the increasing number of people who are overweight will have significant implications for cancer in the future. Unravelling how this gene works is very exciting and may one day lead to new treatments for obesity. However maintaining a healthy body weight through a balanced diet and regular physical activity is important for general health as well as reducing the risk of many cancers."

Genevieve Maul | EurekAlert!
Further information:
http://www.cam.ac.uk

Further reports about: FTO obesity variant

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>