Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New light trap captures larval stage of new species; DNA barcode technology used

25.10.2007
Discovery marks first vertebrate to have genetic barcode included in its original species description

When David Jones, a fisheries oceanographer at the Cooperative Institute for Marine and Atmospheric Studies (CIMAS) located at the University of Miami’s Rosenstiel School, set out to design a better light trap to collect young reef fishes, he never imagined his invention would contribute to the discovery of a new species.

But, after finding a goby that didn’t quite fit any known description, his catch turned out to be the answer to another scientist’s twenty-five-year-old research conundrum. The larval stage captured in Jones’s new trap was matched to the adult form of a previously unknown species of reef fish by new DNA barcoding technology—which confirmed both were members of a new species.

Jones and his team deployed his new light traps in the deep tropical waters surrounding Banco Chinchorro, a remote coral reef atoll off Mexico’s Costa Maya which was recently designated as a Marine Biosphere Reserve. The traps capture fish larvae in a manner similar to a fisherman’s minnow trap, but attract them with a programmable lighting system enclosed in a submersible housing. The lights entice marine organisms to enter the trap “like a moth to a flame”. Jones’s innovative trap intercepts fish returning to the reef at the end of their journey as larvae through the treacherous waters of the open ocean. This allows researchers access to species normally inaccessible by traditional sampling methods, such as those that occupy deep recesses within the reef as adults.

... more about:
»Barcode »DNA »Reef »larva »new species »trap

“Working with scientists from El Colegio de la Frontera Sur (ECOSUR) in Mexico, we retrieved the nightly catches of the light traps each morning. The traps performed well, collecting live specimens from a diverse range of reef fish species. Each evening we meticulously sorted and identified our catch, using a microscope to count fin rays, scales, and bones and examine pigmentation patterns that distinguish species. I came across one specimen of goby that wasn’t quite right,” said Jones.

That individual differed slightly from the known species of Atlantic gobies by having fewer fin rays and lacking a frenum, the small fold of tissue in the pelvic fins of most gobies that forms a sucking disc for grasping the substrate.

The fish was sent to Dr. Benjamin Victor of the Ocean Science Foundation in California, who used a new biochemical technique known as barcoding to match DNA from the larva to an adult fish Victor himself stumbled upon a quarter of a century earlier in Panama. Testing confirmed that the fish was in fact a new species, genetically different from its closest know relatives by about 25%. The specimen in Jones’s trap turned out to be a Coryphopterus kuna, a new species of goby named after the indigenous people of Panama.

This discovery marks the first vertebrate to have its genetic barcode included in its original species description, which was published by Victor in the July 2007 issue of Zootaxa http://www.mapress.com/zootaxa/2007f/zt01526p061.pdf. The process involves identifying and isolating a section of an organism’s mitochondrial DNA to allow researchers a simple and definitive method of recognizing and categorizing existing species by assigning each a unique, searchable DNA barcode.

“DNA barcoding allowed me to match the larva to the adult...[and] prove to the other fish biologists that this was a new species,” said Victor.

Barbra Gonzalez | EurekAlert!
Further information:
http://www.rsmas.miami.edu

Further reports about: Barcode DNA Reef larva new species trap

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>