Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New light trap captures larval stage of new species; DNA barcode technology used

25.10.2007
Discovery marks first vertebrate to have genetic barcode included in its original species description

When David Jones, a fisheries oceanographer at the Cooperative Institute for Marine and Atmospheric Studies (CIMAS) located at the University of Miami’s Rosenstiel School, set out to design a better light trap to collect young reef fishes, he never imagined his invention would contribute to the discovery of a new species.

But, after finding a goby that didn’t quite fit any known description, his catch turned out to be the answer to another scientist’s twenty-five-year-old research conundrum. The larval stage captured in Jones’s new trap was matched to the adult form of a previously unknown species of reef fish by new DNA barcoding technology—which confirmed both were members of a new species.

Jones and his team deployed his new light traps in the deep tropical waters surrounding Banco Chinchorro, a remote coral reef atoll off Mexico’s Costa Maya which was recently designated as a Marine Biosphere Reserve. The traps capture fish larvae in a manner similar to a fisherman’s minnow trap, but attract them with a programmable lighting system enclosed in a submersible housing. The lights entice marine organisms to enter the trap “like a moth to a flame”. Jones’s innovative trap intercepts fish returning to the reef at the end of their journey as larvae through the treacherous waters of the open ocean. This allows researchers access to species normally inaccessible by traditional sampling methods, such as those that occupy deep recesses within the reef as adults.

... more about:
»Barcode »DNA »Reef »larva »new species »trap

“Working with scientists from El Colegio de la Frontera Sur (ECOSUR) in Mexico, we retrieved the nightly catches of the light traps each morning. The traps performed well, collecting live specimens from a diverse range of reef fish species. Each evening we meticulously sorted and identified our catch, using a microscope to count fin rays, scales, and bones and examine pigmentation patterns that distinguish species. I came across one specimen of goby that wasn’t quite right,” said Jones.

That individual differed slightly from the known species of Atlantic gobies by having fewer fin rays and lacking a frenum, the small fold of tissue in the pelvic fins of most gobies that forms a sucking disc for grasping the substrate.

The fish was sent to Dr. Benjamin Victor of the Ocean Science Foundation in California, who used a new biochemical technique known as barcoding to match DNA from the larva to an adult fish Victor himself stumbled upon a quarter of a century earlier in Panama. Testing confirmed that the fish was in fact a new species, genetically different from its closest know relatives by about 25%. The specimen in Jones’s trap turned out to be a Coryphopterus kuna, a new species of goby named after the indigenous people of Panama.

This discovery marks the first vertebrate to have its genetic barcode included in its original species description, which was published by Victor in the July 2007 issue of Zootaxa http://www.mapress.com/zootaxa/2007f/zt01526p061.pdf. The process involves identifying and isolating a section of an organism’s mitochondrial DNA to allow researchers a simple and definitive method of recognizing and categorizing existing species by assigning each a unique, searchable DNA barcode.

“DNA barcoding allowed me to match the larva to the adult...[and] prove to the other fish biologists that this was a new species,” said Victor.

Barbra Gonzalez | EurekAlert!
Further information:
http://www.rsmas.miami.edu

Further reports about: Barcode DNA Reef larva new species trap

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>