Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New light trap captures larval stage of new species; DNA barcode technology used

25.10.2007
Discovery marks first vertebrate to have genetic barcode included in its original species description

When David Jones, a fisheries oceanographer at the Cooperative Institute for Marine and Atmospheric Studies (CIMAS) located at the University of Miami’s Rosenstiel School, set out to design a better light trap to collect young reef fishes, he never imagined his invention would contribute to the discovery of a new species.

But, after finding a goby that didn’t quite fit any known description, his catch turned out to be the answer to another scientist’s twenty-five-year-old research conundrum. The larval stage captured in Jones’s new trap was matched to the adult form of a previously unknown species of reef fish by new DNA barcoding technology—which confirmed both were members of a new species.

Jones and his team deployed his new light traps in the deep tropical waters surrounding Banco Chinchorro, a remote coral reef atoll off Mexico’s Costa Maya which was recently designated as a Marine Biosphere Reserve. The traps capture fish larvae in a manner similar to a fisherman’s minnow trap, but attract them with a programmable lighting system enclosed in a submersible housing. The lights entice marine organisms to enter the trap “like a moth to a flame”. Jones’s innovative trap intercepts fish returning to the reef at the end of their journey as larvae through the treacherous waters of the open ocean. This allows researchers access to species normally inaccessible by traditional sampling methods, such as those that occupy deep recesses within the reef as adults.

... more about:
»Barcode »DNA »Reef »larva »new species »trap

“Working with scientists from El Colegio de la Frontera Sur (ECOSUR) in Mexico, we retrieved the nightly catches of the light traps each morning. The traps performed well, collecting live specimens from a diverse range of reef fish species. Each evening we meticulously sorted and identified our catch, using a microscope to count fin rays, scales, and bones and examine pigmentation patterns that distinguish species. I came across one specimen of goby that wasn’t quite right,” said Jones.

That individual differed slightly from the known species of Atlantic gobies by having fewer fin rays and lacking a frenum, the small fold of tissue in the pelvic fins of most gobies that forms a sucking disc for grasping the substrate.

The fish was sent to Dr. Benjamin Victor of the Ocean Science Foundation in California, who used a new biochemical technique known as barcoding to match DNA from the larva to an adult fish Victor himself stumbled upon a quarter of a century earlier in Panama. Testing confirmed that the fish was in fact a new species, genetically different from its closest know relatives by about 25%. The specimen in Jones’s trap turned out to be a Coryphopterus kuna, a new species of goby named after the indigenous people of Panama.

This discovery marks the first vertebrate to have its genetic barcode included in its original species description, which was published by Victor in the July 2007 issue of Zootaxa http://www.mapress.com/zootaxa/2007f/zt01526p061.pdf. The process involves identifying and isolating a section of an organism’s mitochondrial DNA to allow researchers a simple and definitive method of recognizing and categorizing existing species by assigning each a unique, searchable DNA barcode.

“DNA barcoding allowed me to match the larva to the adult...[and] prove to the other fish biologists that this was a new species,” said Victor.

Barbra Gonzalez | EurekAlert!
Further information:
http://www.rsmas.miami.edu

Further reports about: Barcode DNA Reef larva new species trap

More articles from Life Sciences:

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA eyes Pineapple Express soaking California

24.02.2017 | Earth Sciences

New gene for atrazine resistance identified in waterhemp

24.02.2017 | Agricultural and Forestry Science

New Mechanisms of Gene Inactivation may prevent Aging and Cancer

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>