Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Not just humans benefit from animal biotechnology

25.10.2007
Laboratory animals are the source of major discoveries and breakthroughs in biology, not just in tackling disease but also unravelling fundamental molecular processes. Delegates at a recent research conference organised by the European Science Foundation (ESF) and Wellcome Trust heard how technology capable of analysing animal genes across the whole genome is yielding many benefits for agriculture and human society.

In breeding both domestic and farm animals for example, it is now possible to select individuals with a wide spectrum of desirable traits in a single generation. In the past selective breeding of animals has been confined to traits that are obvious or easy to measure, and it has been difficult to produce individuals with a broad combination of desirable qualities, according to Helen Sang, chair of the recent ESF/Wellcome conference on Animal Biotechnology.

"There is the potential to increase the effectiveness of genetic selection, even for traits that are difficult or take a long time to measure," said Sang from the Roslin Institute Department of Gene Function & Development Edinburgh United Kingdom. The key point here is that it is now possible to identify individual animals for breeding, and select offspring, with the best overall combination of gene variants (alleles) rather than focusing on just one or two traits.

This ability to measure whole genomes is also helping unravel the genetic components of many multi-gene diseases in both humans and animals. "It is impressive how quickly specific mutations can be mapped in farm animal species and the dog, now that genome sequences are available and SNP maps," said Sang. SNP, or Single Nucleotide Polymorphism, refers to the single point variations between the DNA of individuals of a species that determine traits. These lead to the existence of different versions of some genes, called alleles, and in some cases these variants arise in an individual through mutations in a single nucleotide. It is now possible to pinpoint mutations across the whole genome quickly and study how the associated genes interact. "This information can be used to investigate disease in these species but also in many cases can be useful models for similar human genetic diseases," said Sang.

... more about:
»Conference »Genome »Sang »Trait »alleles »benefit »mutations

The conference showed how fundamental breakthroughs can be exploited in tackling disease. One of the most exciting discoveries of recent years is the fact that rods and cones are not the only light receptors in the eye, overturning the long established view. There is also a receptor, called phototropin, that recognises blue light at much lower levels, even operating in some people who are otherwise blind, playing an important role in setting the circadian clock. At the conference, one of the world's leading specialists in chronobiology (study of biological rhythms) Russell Foster, explained how mouse models were being used to study this newly discovered blue light receptor. "This has been analysed in mice and he is using the knowledge gained to interact with ophthalmologists (eye disease specialists) and patients," said Sang.

Genes determine individual traits not just through their variations, or alleles, but also through differing levels of expression. Another important field of research discussed at the conference concerned the important role of microRNAs in controlling gene expression. RNAs are normally the intermediate molecules between DNA and their products, proteins, in gene expression. However microRNA is a type of RNA that instead of being involved in protein production, feeds back into the DNA coding process to regulate the expression of other genes. Mutations in the genes coding for the microRNA itself can therefore effect the expression of other genes, with some subtle and occasionally dramatic effects, as Sang pointed out. Given that animals inherit two copies, or alleles, of each gene, mutations are more likely to be effective when one of the copies is already silenced, as happens in the phenomenon known as genomic imprinting. Sang cited the case of sheep, where imprinting of a gene called callipyge leads to increased muscle growth in the hindquarters, which clearly can be a desirable trait in meat production.

All these different strands of research could benefit from being integrated into a common framework to avoid duplication of effort and exploit relevant expertise, according to Sang. "The main value of the workshop was that it brought the more theoretical people together with experimental scientists and opportunities for synergies were identified."

Thomas Lau | alfa
Further information:
http://www.esf.org/activities/esf-conferences.html

Further reports about: Conference Genome Sang Trait alleles benefit mutations

More articles from Life Sciences:

nachricht Nesting aids make agricultural fields attractive for bees
20.07.2017 | Julius-Maximilians-Universität Würzburg

nachricht The Kitchen Sponge – Breeding Ground for Germs
20.07.2017 | Hochschule Furtwangen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>