Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

AN EYE FOR AN EYE: Using stem cells to treat damaged eyes and a rare skin disorder

24.10.2007
Stem cells can be used to grow new corneal tissue and, together with gene therapy, treat a rare genetic skin disorder

Doctors and scientists in Italy have shown how stem cells can be used to treat damaged eyes and, in combination with gene therapy, a rare and debilitating skin disease.

Professor Michele De Luca of the University of Modena and Reggio Emilia described the work to an international meeting of stem cell scientists in Milan (30 Sep – 2 Oct, “Challenges in Stem Cell Differentiation and Transplantation”) organised by the European Science Foundation’s EuroSTELLS stem cell programme in conjunction with the National Research Council of Italy.

Stem cell therapy involves the use of stem cells – ‘blank’ cells (‘toti- or ‘pluripotent’) that have not differentiated into specialised cells – to generate new tissues or organs. While widespread stem cell therapy lies some way in the future, Professor De Luca pointed out that it has been used already for many years in the treatment of burns. Many tissues of the body are continuously regenerated by their own population of stem cells. In the skin, such cells are called holoclones and for decades doctors have taken small samples of these cells from burns patients and cultured the cells into new skin that can be grafted onto the wound.

... more about:
»Cornea »Eye »Rare »Stem »damaged »disorder »limbus »skin »treat

Professor De Luca’s team showed that cells of the transparent outer covering of the eye, the cornea, are constantly being replaced by new cells deriving from an area surrounding the cornea called the limbus. The cells differentiate into corneal epithelium and migrate to the cornea.

“If the cornea is damaged severely by a chemical burn or infection, for example, it can become opaque and necessitates a transplant,” Professor De Luca told the meeting. “However, a transplant will only be successful if the patient’s limbus has remained intact so that it can continue to replenish the new cornea.”

For many years doctors did not understand why some transplants failed – because they did not appreciate the requirement for the limbus.

In cases where the limbus is destroyed there has been little hope to restore the patient’s sight. Professor De Luca’s team decided to take a leaf from the way that burns are treated and grow a new cornea from limbar stem cells taken from the healthy eye.

By removing a small sample of these cells it was possible to culture a new cornea and graft it on to the damaged eye. The team showed that of 240 patients who were operated on in this way, the cornea regenerated successfully in 70% of cases.

The researchers then turned their attention to a rare but debilitating genetic disease of the skin resulting in a syndrome known as Epidermolysis Bullosa, in which the skin is highly fragile and prone to blistering due to faulty proteins that effectively anchor the surface layers of skin to the body.

In one form of the disease there is a mutation in one of these anchoring proteins called laminin 5. The Italian researchers obtained consent to carry out a small-scale trial of a novel gene therapy using skin holoclones on one patient, a 37-year-old male, on small part of his body .

“Because the patient’s body was so badly affected it was difficult to isolate any stem cells from his skin,” Professor De Luca told the conference. “Most people have between seven and ten per cent of holoclones. Our man had none. Eventually we found a few in the palms of his hand and cultured them from a biopsy.”

The team then used gene therapy to insert the correct laminin gene into the growing cells and grafted the new tissue onto the patient’s body. The graft was successful and after several months the skin remained to all intents normal, without the blistering and flaking.

“This demonstrates that it is possible to use stem cells in gene therapy for genetic skin disorders,” Professor De Luca said.

EuroSTELLS is the European Collaborative Research (EUROCORES) programme on “Development of a Stem Cell Tool Box” run by the European Medical Research Councils (EMRC) Unit in the European Science Foundation. ESF provides scientific coordination and support for the networking activities of funded scientists through the EC FP6 Programme, under contract no. ERAS-CT-2003-980409. Research funding is provided by the participating national organisations.

Sofia Valleley | EurekAlert!
Further information:
http://www.esf.org

Further reports about: Cornea Eye Rare Stem damaged disorder limbus skin treat

More articles from Life Sciences:

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

nachricht Party discipline for jumping genes
22.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

Hope to discover sure signs of life on Mars? New research says look for the element vanadium

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>