Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transgenics transformed

22.10.2007
Maize mini-chromosomes can add stacks of functional genes to plants

A new method of constructing artificial plant chromosomes from small rings of naturally occurring plant DNA can be used to transport multiple genes at once into embryonic plants where they are expressed, duplicated as plant cells divide, and passed on to the next generation -- a long-term goal for those interested in improving agricultural productivity.

In the October 19, 2007, issue of PLoS-Genetics, a team of academic and commercial researchers show that their "maize mini-chromosomes" (MMC) can introduce an entire "cassette" of novel genes into a plant in a way that is structurally stable and functional. Early results, the study authors say, "suggest that the MMC could be maintained indefinitely."

"This appears be the tool that agricultural scientists, and farmers, have long dreamed of," said Daphne Preuss, PhD, professor of molecular genetics and cell biology at the University of Chicago and chief scientific officer and president of Chromatin, Inc., the makers of the MMCs.

... more about:
»Chromatin »MMC »Technology »crop »maize »mini-chromosome

"This technology could be used to increase the hardiness, yield and nutritional content of crops," she said. "It could improve the production of ethanol or other biofuels. It could enable plants to make complex biochemicals, such as medicines, at very little expense."

It could also "cut one to two years out of any new transgenic project," said Preuss, who is taking a leave of absence from the University to bring this technology into the marketplace. "You get a better product faster, which saves time, reduces costs, and frees up resources."

The production of transgenic plants, including maize, has historically relied on techniques that integrate DNA fragments into a host chromosome. This can disrupt important native genes or lead to limited or unregulated expression of the added gene.

Currently, to add a single gene, plant scientists create hundreds of transgenic plants in which the new gene is randomly inserted into a plant chromosome. Then they screen the gene-altered plants to find the few that might be suitable for commercial use. If they want to add two genes, they create twice as many new plants, screen for single-gene successes, then cross breed them to get both new genes, a slow and laborious process.

Instead, Preuss and colleagues have constructed MMCs that contain DNA sequences found in maize centromeres, the chromosomal regions needed for inheritance. Rather than inserting the new genes randomly into a plant's natural chromosomes, these mini-chromosomes remain separate.

As a result, the new genes can be arranged in a defined sequence, with each gene surrounded by the desired regulatory mechanisms. This results in more consistent and controlled expression. The whole cassette of genes is passed on as a group during cell division as well as to the next generation.

In their PLoS paper, the researchers characterized the behavior of the maize mini-chromosome through four generations. Using a gene for red color as a marker, they showed that the added genes are expressed "in nearly every leaf cell, indicating stability through mitosis" -- the process in which a cell duplicates its chromosomes to generate two identical daughter cells.

They also show that the MMC is efficiently passed on through meiosis, the creation of gametes, to the next generation, at ratios "approaching Mendelian inheritance."

Taken together, the authors conclude, the maize mini-chromosome, once introduced, behaves much like an ordinary chromosome. It remains distinct from the other chromosomes. Its gene cassette is structurally stable from generation to generation. The genes it carries are expressed and it is transmitted through mitosis and meiosis.

This development has not gone unnoticed. Six years ago, Preuss and two of her post-doctoral students at the University, Gregory Copenhaver and Kevin Keith, started Chromatin to refine and apply this technology. On October 10, 2006, the United States Patent and Trademark Office issued Chromatin patent No. 7,119,250, which extends the exclusive right to use these mini-chromosomes to all plants. This includes "a crop plant," the patent states, "a commercial crop plant, a vegetable crop plant, a fruit and vine crop plant, a field crop plant."

On May 22, 2007, biotech giant Monsanto Company purchased non-exclusive rights to use Chromatin's mini-chromosome stacking technology in corn, cotton, soybeans, and canola. Chromatin is in discussions to license this technology to other companies, potentially capturing most of the US corn market.

The timing was ideal. The US, in order to limit oil imports and reduce greenhouse gasses, hopes to double its use of ethanol in fuels by 2012 and to double that twice over by 2022. Because of increased demand, corn prices rose this summer by about 50 percent over last year.

Preuss and colleagues hope to apply the technology to other plants, including sugar cane and switch grass, which could also serve as biofuel sources. They are also looking at other applications and expanding the gene carrying capacity of their mini-chromosomes. They have successfully delivered mini-chromosomes about six times the size of MMC1, suggesting that this platform can carry "a large number of genes."

John Easton | EurekAlert!
Further information:
http://www.uchospitals.edu

Further reports about: Chromatin MMC Technology crop maize mini-chromosome

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

Construction of practical quantum computers radically simplified

05.12.2016 | Information Technology

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>