Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacteria from sponges make new pharmaceuticals

04.09.2007
Thousands of interesting new compounds have been discovered inside the bodies of marine sponges according to scientists speaking today (Tuesday 4 September 2007) at the Society for General Microbiology’s 161st Meeting at the University of Edinburgh, UK, which runs from 3-6 September 2007.

Over half of the bodyweight of living sea sponges – including the sort that we use in our baths – is made up of the many different bacteria that live inside them, in the same way that we all have bacteria living in our guts which help us to digest our food.

“Marine sponges are the most prolific and important source of new active compounds discovered in the last twenty or thirty years in our seas. We thought it likely that many of the interesting new compounds we were discovering inside sea sponges were actually being made by the bacteria inside their bodies, not the sponges themselves”, says Dr Detmer Sipkema of University College Berkeley, in California, USA.

Unfortunately the scientists discovered that it is very difficult to grow these bacteria in the laboratory, as the environment inside a sponge is significantly different from conditions in the surrounding seawater. Currently, only between one in a hundred and one in a thousand types of bacteria can be cultured artificially.

... more about:
»bacteria »compounds »interesting

“We are trying to culture the other 99% by simulating the microenvironment in the sponge where the bacteria live”, says Dr Sipkema. “The next step will be to identify which bacteria are responsible for the production of the most medically interesting compounds and try to culture these on a larger scale. Most attempts to properly test these important bioactive compounds in hospital patients have failed because doctors simply cannot get enough of the products to prove that the clinical trials are effective or safe”.

So far, by trying a lot of different cultivation methods, the scientists have been successful in culturing about 10% of the different sorts of bacteria that live in the sponges.

As well as their attempt to produce useful pharmaceutical compounds on a commercial scale, the researchers believe that successfully culturing these little known bacteria will give new insights into evolution.

“Marine sponges were the first multicellular organisms to evolve on earth that are still alive. This implies that the relationship between the sponge and its bacterial inhabitants may also be very old”, says Dr Detmer Sipkema. “Therefore sponges are interesting to study the evolution of symbiosis, teaching us about the way different organisms have developed their mutual relationships”.

Lucy Goodchild | EurekAlert!
Further information:
http://www.sgm.ac.uk

Further reports about: bacteria compounds interesting

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>