Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High and mighty: first common height gene identified by researchers behind 'obesity gene' finding

04.09.2007
Whilst we all know that tall parents are more likely to have tall children, scientists have been unable to identify any common genes that make people taller than others. Now, however, scientists have identified the first gene, known as HMGA2, a common variant of which directly influences height.

The difference in height between a person carrying two copies of the variant and a person carrying no copies is just under 1cm in height, so does not on its own explain the range of heights across the population. However, the researchers believe the findings may prove important.

Previous studies have suggested that, unlike conditions such as obesity, which is caused by a mix of genetic and environmental factors – so called "nature and nurture" – 90% of normal variation in human height is due to genetic factors rather than, for example, diet. However, other than very rare gene variants that affect height in only a small number of people, no common gene variants have until now been identified.

The research was led by Dr Tim Frayling from the Peninsula Medical School, Exeter, Professor Mark McCarthy from the University of Oxford and Dr Joel Hirschhorn from the Broad Institute of Harvard and MIT in Cambridge, US. Dr Frayling and Professor McCarthy were also part of a Wellcome Trust-funded study team that discovered the first common gene linked to obesity in April this year.

Using data from the Wellcome Trust Case Control Consortium, the largest study ever undertaken into the genetics underlying common diseases, and the Diabetes Genetics Initiative, in the US, the researchers conducted a genome-wide study of DNA samples from 5,000 people. The findings – that variations in the gene HMGA2 make some people taller than others – are published online today in the journal Nature Genetics.

Each of us carries two copies of each gene, one from our mother and one from our father. However, each copy can be a variant, or "allele" – in the case of the HMGA2 gene, a "tall" version and a "short" version. The researchers found that as many as 25% of white Europeans carried two "tall" versions of this particular gene, making them approximately 1cm taller than the 25% of people who carry two "short" versions.

"Height is a typical 'polygenic trait' – in other words, many genes contribute towards making us taller or shorter," explains Dr Frayling. "Clearly, our results do not explain why one person will be 6'5" and another only 4'10". This is just the first of many that will be found – possibly as many as several hundred."

The exact role that HMGA2 has in growth is unclear, but the researchers believe it is most likely in increased cell production. This may have implications for the development of cancer as tumours occur due to unregulated cell growth. Previous studies have shown an association between height and certain cancers: taller people are statistically more likely to be at risk from cancers, including those found in the prostate, bladder and lung.

"There appears to be a definite correlation between height and some diseases," explains Dr Mike Weedon, lead author on the study. "For example, there are associations between shortness and slightly increased risks of conditions such as heart disease. Similarly, tall people are more at risk from certain cancers and possibly osteoporosis."

Dr Frayling believes that the study has major implications for helping scientists understand how common variations in DNA in the human the genome actually affect us, especially in relation to growth and development.

"Even though improved nutrition means that each generation is getting successively taller, variation in height within a population is almost entirely influenced by our genes," says Dr Frayling. "This fact, coupled with the ease of measuring height, means that height can act as a model trait, allowing us to explore in detail the influence that the genome actually has on our general make-up, not just disease risk."

In addition to being a textbook example of a complex trait, height is a common reason children are referred to specialists. Although short stature by itself typically does not signify cause for concern, delayed growth can sometimes reflect a more serious underlying medical condition.

“By defining the genes that normally affect stature, we might someday be able to better reassure parents that their child’s height is within the range predicted by their genes, rather than a consequence of disease,” said Dr Hirschhorn from the Broad Institute of Harvard and MIT.

Craig Brierley | EurekAlert!
Further information:
http://www.wellcome.ac.uk

Further reports about: Broad Institute Condition EXPLAIN Frayling HMGA2 finding obesity variant

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>