Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery could help stop malaria at its source -- the mosquito

31.08.2007
As summer temperatures cool in the United States, fewer mosquitoes whir around our tiki torches. But mosquitoes swarming around nearly 40 percent of the world’s population will continue to spread a deadly parasitic disease — malaria. Now an interdisciplinary team led by researchers from Rensselaer Polytechnic Institute has found a key link that causes malarial infection in both humans and mosquitoes.

If this link in the chain of infection can be broken at its source — the mosquito — then the spread of malaria could be stopped without any man, woman, or child needing to a take a drug. The researchers’ discovery will be published in the Aug. 31 edition of the Journal of Biological Chemistry.

The team found that humans and the mosquitoes that carry the malaria parasite share the same complex carbohydrate, heparan sulfate. In both humans and mosquitoes, heparan sulfate is a receptor for the malaria parasite, binding to the parasite and giving it quick and easy transport through the body. The team was led by Robert J. Linhardt, the Ann and John H. Broadbent Jr. ’59 Senior Constellation Professor of Biocatalysis and Metabolic Engineering at Rensselaer.

“The discovery allows us to think differently about preventing the disease,” Linhardt said. “If we can stop heparan sulfate from binding to the parasite in mosquitoes, we will not just be treating the disease, we will be stopping its spread completely.”

Malaria parasites are extremely finicky about their hosts, Linhardt explained. Birds, rodents, humans, and primates all can be infected with malaria, but each species is infected by a different species of mosquito — and each of those mosquitoes is infected by a different malaria parasite. In other words, there needs to be a perfect match at the molecular basis for malaria to spread from one species to another, Linhardt said. Researchers have long understood this deadly partnership, but the molecular basis for the match had never been determined.

“The discovery marks a paradigm shift in stopping malaria,” Linhardt said “Now, we can work to develop an environmentally safe, inexpensive way to block infection in mosquitoes and not have to worry about drug side effects in humans.”

Malaria kills over one million people around the world, mostly young children. And the problem is growing, Linhardt noted. As the Earth heats up due to global warming, outbreaks of malaria are being reported higher up the coast of South America and Mexico each year, he said.

“Unfortunately, there is little direct funding on malaria in this country outside of the Bill and Melinda Gates Foundation, because it is not considered a major threat in this country,” Linhardt noted. “We do our research on a shoestring. Malaria research funding needs to move higher up on the scientific priority list.”

Linhardt and his collaborators were the first to discover the link between the spread of malaria in humans and heparan sulfate in 2003. Those findings were also published in the Journal of Biological Chemistry. In this earlier study, Linhardt compared the receptors in the liver of humans to those of rodents. The liver is the first organ to be infected by the malaria parasite in mammals. The researchers found that heparan sulfate in the human liver was the unwitting transporter of the disease to the human bloodstream. The receptor found in rodents was a different heparan sulfate.

The next step for Linhardt, outlined in the current research, was to determine if heparan sulfate was also present in the species of mosquito known to spread malaria to humans, Anopheles stephensi. To make this key link, Linhardt and his current research team, which includes Rensselaer doctoral students Melissa Kemp and Jin Xie, enlisted the help of New York University physician and entomologist Photini Sinnis. Sinnis and her team at NYU provided their entomological expertise and the ill-fated mosquitoes needed for the experiments.

After finding heparan sulfate in mashed mosquitoes, the researchers needed to determine if heparan sulfate was in the mosquito organs known to host the malaria parasite. If so, it was likely that heparan sulfate was the reason malaria spreads from mosquito to human and human to mosquito.

In mosquitoes, the malaria parasite infects the digestive tract. A mosquito bites a human who carries the malaria parasite in his or her bloodstream. The parasites move into the bug’s gut and then to their salivary glands, allowing the mosquito to infect another human during its next blood meal. To isolate a two-microgram salivary gland and the four-microgram digestive tract from each mosquito required the extreme skill of Sinnis and her team, which included Alida Coppi. Once isolated, the guts and glands were analyzed by internationally renowned microanalysts Toshihiko Toida, Hidenao Toyoda, and Akiko Kinoshita-Toyoda at Chiba University in Japan. Heparan sulfate was found in both mosquito organs.

As a final step, the Rensselaer team proved that the heparan sulfate in the mosquito bound to the same malaria parasite that heparan sulfate found in the human liver did. It was an unfortunate perfect match.

Gabrielle DeMarco | EurekAlert!
Further information:
http://www.rpi.edu

Further reports about: Linhardt Malaria Organ gland heparan infected malaria parasite parasite sulfate

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>