Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel Method Enables Genomic Screening of Blood Vessels from Patient Tissue

30.08.2007
Scientists have developed a new method of capturing a complete genome-wide screening of blood vessel cells in their actual disease state, advancing the potential for genetic research on the tissue responsible for delivering nourishment that can accelerate the growth of both a cancer tumor or wound healing.

The method is not just a bonus for translational research, but also has made it possible to determine that genes long associated only with cancer are also expressed in chronic wounds.

The team of scientists, based at Ohio State University Medical Center, is using laser capture microdissection to pluck blood vessels, or if need be a single cell, from human wound tissue as part of a major research initiative looking for mechanisms underlying chronic wounds.

They published a description of the research method in the Proceedings of the National Academy of Sciences scheduled for online publication this week and print publication on Sept. 4.

“We have enabled the capture and genome-wide screening of blood vessels from biopsy material regardless of disease,” said Dr. Chandan Sen, executive director of Ohio State’s Comprehensive Wound Center and senior author of the paper. “It’s a big leap in our ability to perform high-resolution vascular biology research utilizing patient material.”

The method is superior to previous methods of cell biology research because it allows scientists to study clinical tissue material with cell-specific resolution, said Sen, also professor and vice chair of surgery and deputy director of Ohio State’s Davis Heart and Lung Research Institute. Standard research methods, such as examining cells in the lining of vessel walls, are conducted by cell culture, meaning the cells are removed from their disease environment and placed in a culture dish. The culture conditions do not mimic the microenvironment of the cells when they are in their actual diseased state.

Studies that examine biopsy tissue from patients typically study extracts of the entire biopsy, which represents a mix of numerous tissue and cell types. Such whole-biopsy extract studies do not provide precise cell-specific information, Sen noted. The new approach identifies blood vessels in the human tissue in a matter of less than five minutes, followed by robot-assisted rapid dissection and collection of blood vessels from serial tissue sections. The collected tissue material can then be subjected to genome-wide screening.

Blood vessels are critical components of multiple diseases, so their quick identification and analysis at the cellular level has broad implications.

“The main strategies of limiting cancer are to stop the vascular supply that feeds the tumor. So if you know the biology of the blood vessel feeding the tumor, you can halt that action and the tumor can no longer grow,” Sen said. “In the case of chronic wounds, the tissue can grow only if blood vessels bring food and fuel – say, glucose and oxygen – to power the healing process. “In both diseases, you need a clear understanding of vascular biology.”

The tissue screened for the study of the genetics of wound healing is supplied by a new wound tissue bank at Ohio State, which holds more than 500 samples collected from seven U.S. centers affiliated with National Healing Corp. Ohio State’s Comprehensive Wound Center has a partnership with National Healing Corp., a private Florida company that manages 20 percent of the nation’s wound-healing centers

“Traditionally, in wound healing, there has been no way to tell what’s going on in the wound except by visualization and what a biopsy says – whether it’s infected or cancerous. We’re advancing the depth and level of this knowledge in our investigation,” said Dr. Gayle Gordillo, director of the plastic surgery research lab at Ohio State’s Medical Center and co-author of the paper.

Current studies are ongoing to test which genes predict healing and which genes are expressed in wounds that are chronic and predict a failure to heal. The researchers are taking biopsies from clinic patients with both healing and non-healing wounds and using the laser capture microdissection to study a homogeneous cell population and run the full genome screen.

The laser capture technology allows the scientists to zero in on the microvessels, which are expected to sprout when tissue is healing. If the microvessels in chronic wound samples are not sprouting, the researchers can then turn to endothelial cells – in the lining of blood vessel walls – to see if there is a genetic basis in those cells for why wounds do or don’t heal.

The first author of the study, Dr. Sashwati Roy, assistant professor of surgery, is a molecular biologist whose expertise lies in developing the method and sorting out the meaning of the data collected from the genes and identifying candidate genes involved in healing.

“One little genetic mutation can affect a person’s response to medications. The laser capture microdissection represents a powerful approach to conduct cell biology research utilizing patient biopsy material,” Roy said.

“The basic assumption has been that the blood vessels in intact skin and wounds are the same. What we’re seeing instead is that genes thought to be uniquely expressed in cancer are also expressed in wounds. None of these genes has been studied in wound healing,” Sen said. “So ultimately, this novel approach helps formulate new clinically relevant hypotheses. It’s a highlight for patient-based research.”

This work was supported by the National Institutes of Health, the National Science Foundation and Ohio State’s General Clinical Research Center.

Additional Ohio State co-authors are Darshan Patel, Savita Khanna, Sabyasachi Biswas and Avner Friedman.

Emily Caldwell | EurekAlert!
Further information:
http://www.osumc.edu

Further reports about: Capture Chronic Genetic Laser Sen biopsy blood vessel expressed healing method vessel

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>