Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel Method Enables Genomic Screening of Blood Vessels from Patient Tissue

30.08.2007
Scientists have developed a new method of capturing a complete genome-wide screening of blood vessel cells in their actual disease state, advancing the potential for genetic research on the tissue responsible for delivering nourishment that can accelerate the growth of both a cancer tumor or wound healing.

The method is not just a bonus for translational research, but also has made it possible to determine that genes long associated only with cancer are also expressed in chronic wounds.

The team of scientists, based at Ohio State University Medical Center, is using laser capture microdissection to pluck blood vessels, or if need be a single cell, from human wound tissue as part of a major research initiative looking for mechanisms underlying chronic wounds.

They published a description of the research method in the Proceedings of the National Academy of Sciences scheduled for online publication this week and print publication on Sept. 4.

“We have enabled the capture and genome-wide screening of blood vessels from biopsy material regardless of disease,” said Dr. Chandan Sen, executive director of Ohio State’s Comprehensive Wound Center and senior author of the paper. “It’s a big leap in our ability to perform high-resolution vascular biology research utilizing patient material.”

The method is superior to previous methods of cell biology research because it allows scientists to study clinical tissue material with cell-specific resolution, said Sen, also professor and vice chair of surgery and deputy director of Ohio State’s Davis Heart and Lung Research Institute. Standard research methods, such as examining cells in the lining of vessel walls, are conducted by cell culture, meaning the cells are removed from their disease environment and placed in a culture dish. The culture conditions do not mimic the microenvironment of the cells when they are in their actual diseased state.

Studies that examine biopsy tissue from patients typically study extracts of the entire biopsy, which represents a mix of numerous tissue and cell types. Such whole-biopsy extract studies do not provide precise cell-specific information, Sen noted. The new approach identifies blood vessels in the human tissue in a matter of less than five minutes, followed by robot-assisted rapid dissection and collection of blood vessels from serial tissue sections. The collected tissue material can then be subjected to genome-wide screening.

Blood vessels are critical components of multiple diseases, so their quick identification and analysis at the cellular level has broad implications.

“The main strategies of limiting cancer are to stop the vascular supply that feeds the tumor. So if you know the biology of the blood vessel feeding the tumor, you can halt that action and the tumor can no longer grow,” Sen said. “In the case of chronic wounds, the tissue can grow only if blood vessels bring food and fuel – say, glucose and oxygen – to power the healing process. “In both diseases, you need a clear understanding of vascular biology.”

The tissue screened for the study of the genetics of wound healing is supplied by a new wound tissue bank at Ohio State, which holds more than 500 samples collected from seven U.S. centers affiliated with National Healing Corp. Ohio State’s Comprehensive Wound Center has a partnership with National Healing Corp., a private Florida company that manages 20 percent of the nation’s wound-healing centers

“Traditionally, in wound healing, there has been no way to tell what’s going on in the wound except by visualization and what a biopsy says – whether it’s infected or cancerous. We’re advancing the depth and level of this knowledge in our investigation,” said Dr. Gayle Gordillo, director of the plastic surgery research lab at Ohio State’s Medical Center and co-author of the paper.

Current studies are ongoing to test which genes predict healing and which genes are expressed in wounds that are chronic and predict a failure to heal. The researchers are taking biopsies from clinic patients with both healing and non-healing wounds and using the laser capture microdissection to study a homogeneous cell population and run the full genome screen.

The laser capture technology allows the scientists to zero in on the microvessels, which are expected to sprout when tissue is healing. If the microvessels in chronic wound samples are not sprouting, the researchers can then turn to endothelial cells – in the lining of blood vessel walls – to see if there is a genetic basis in those cells for why wounds do or don’t heal.

The first author of the study, Dr. Sashwati Roy, assistant professor of surgery, is a molecular biologist whose expertise lies in developing the method and sorting out the meaning of the data collected from the genes and identifying candidate genes involved in healing.

“One little genetic mutation can affect a person’s response to medications. The laser capture microdissection represents a powerful approach to conduct cell biology research utilizing patient biopsy material,” Roy said.

“The basic assumption has been that the blood vessels in intact skin and wounds are the same. What we’re seeing instead is that genes thought to be uniquely expressed in cancer are also expressed in wounds. None of these genes has been studied in wound healing,” Sen said. “So ultimately, this novel approach helps formulate new clinically relevant hypotheses. It’s a highlight for patient-based research.”

This work was supported by the National Institutes of Health, the National Science Foundation and Ohio State’s General Clinical Research Center.

Additional Ohio State co-authors are Darshan Patel, Savita Khanna, Sabyasachi Biswas and Avner Friedman.

Emily Caldwell | EurekAlert!
Further information:
http://www.osumc.edu

Further reports about: Capture Chronic Genetic Laser Sen biopsy blood vessel expressed healing method vessel

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>